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MOTIVATION

Planar N=4 SYM: playground for new ideas in scattering amplitudes

Four-point amplitudes: restricted kinematics, powertul symmetries

Bern-Dixon-Smirnov (BDS) ansatz

(Bern, Dixon, Smirnov 2005)

Ma=1+Y MO () = e[S (FOOM 10 + 00 + BO ()]
L=1

[=1

o Kinematical part fully fixed, leading IR divergence predicted by integrability

(Beisert, Eden, Staudacher 2006)

Higher-point amplitudes: non-trivial IR finite kinematical part

¢ Remainder function, ratio function -- start at 6pt

¢ Powerful techniques: symbols, hexagon bootstrap, flux-tube S-matrix,.....

(Dixon, McLeod, von Hippel, Caron-Huot, Drummond,

(Goncharov, Spradlin, Vergu, Volovich) Henn, Dulat, Papathanasiou, Gurdogan, Wilhelm)

(Basso, Sever, Vieira,)



MOTIVATION

Loop integrand - rational function of loop and external momenta

¢ Very complex even at 4pt if we go to high loop order
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¢ In D=4: presence of IR divergencies - regularization

® We will work with IR finite object (Wilson loop): negative geometries

Perturbation theory: finite radius of convergence
P =¢@uN  gym — 0, N = 0o tHooft limit
¢ Can we determine some quantities to all loop ordersin g ? g does not run
-> re-derive integrability predictions from amplitudes + more

® We need to control the integrand to all loops + find a way to integrate + resum



MOTIVATION

The integrand must be complicated because it contains a lot
of “data”, infinite number of cuts that must be satisfied

Are these data lost after integration (how do they transform into numbers)?
Can we calculate the IR divergence from amplitudes? Where is integrability there?

Is the full IR finite object (Wilson loop) exactly calculable?

Amplituhedron: new geometric definition for the all-loop integrand

“L Can we use it to calculate the integrand to all loops?

If yes, can we integrate, resum and explore strong coupling?



INTRODUCTION



EARLY RESULTS

One-loop amplitude calculated in 1982, (full) two-loop in 1997

Two-Loop Four-Gluon Amplitudes in N=4 Super-Yang-Mills
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In 2003 Anastasiou, Bern, Dixon and Kosower:
planar sector (large N limit) of the amplitude

Planar Amplitudes in Maximally Supersymmetric Yang-Mills Theory

C. Anastasiou
Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

Z. Bern
Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547

L. Dion (a) Observed relation between two-loop and

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

b. A Kosover one-loop in dimensional regularization

Service de Physique, Centre d’Etudes de Saclay, F-91191 Gif-sur-Yvette cedex, France
(Dated: September, 2003)
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BDS ANSATZ

In 2005, Bern, Dixon and Smirnov calculated 3-loop amplitude

. . . 1
Iteration of Planar Amplitudes in Mf) () = _§St (32 ]£§3)“(3, t) + 2s [1§3)b(t, s) +t° ]f”“(t, s) + 2t [§3)b(3, t))
Maximally Supersymmetric Yang-Mills Theory 5 3 5 5
2 3 .
at Three Loops and Beyond st St L) 8 t(l+1,)? mtegrand
o 5 \ 8 AR 8 AU already given
V1 ern
1 4 1 4 1
Department of Physics and Astronomy, UCLA 2 3 S g , : \ in 1997 paper
2
Los Angeles, CA 90095-1547, USA
08 nge es 4 S t3 _ stz(ll'*' LZ)Z ~ stz(l]'*' lz)z 12
Lance J. Dixon -8 8 h 8
1 4 17 h 4

Stanford Linear Accelerator Center i 4

Stanford University

Stanford, CA 94309, US4 The integrand obtained using unitarity methods, after

integration they found the same iterative structure

Vladimir A. Smirnov
Nuclear Physics Institute of Moscow State University

Moscow 119992, Russia

(Dated: May, 2005) 1 3 ,
MP(e) = —3|[MP @] +MP( MP (9 + fO () M{PBe) + CD +O(9

Conjecture: | M, =1+ ZaLM”’) (€) = exp [Z Y FO(OMD (1) + CO + ED(e ))]

L=1 =1

cusp-anomalous dimension calculated in 2006 by FO(e) . +ef® 4 2fO
Beisert, Eden and Staudacher from integrability




(Bern, Czakon, Dixon, Kosower, Smirnov, 2006)
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HIGHER LOOPS

In next two years, 4-loop and 5-loop integrands were constructed

(Bern, Carrasco, Johansson, Kosower, 2007)
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+ analytic results not known, leading IR divergence verified at 4-loops numerically

+ numerators can be chosen to be invariant under dual conformal symmetry

(Drummond, Henn, Korchemsky, Sokatchev, 2008)

Today calculated up to 12-loops using f-graphs

(Bourjaily, He, Shi, Tang, 025)

(Bourjaily, Heslop, Tran, 2016)

(He, Shi, Tang, Zhang, 2024)



LOOP INTEGRAND

In 2010, we took the planar integrand seriously and formulated recursion
relations for N=4 SYM in momentum twistor space coages, 2009)

+ the integrand is a unique rational function The All-Loop Integrand For Scattering
Amplitudes in Planar N’ =4 SYM

N. Arkani-Hamed®?, J. Bourjaily®?, F. Cachazo®¢, S. Caron-Huot?, J. Trnka%?

f— 10 op @ School of Natural Sciences, Institute for Advanced Study, Pri
] y, Princeton, NJ 08540, USA
Zn,k (ABl ] AB2 g o o ey ABK 3 Zl 3 ZQ IR Zn) b Department of Physics, Princeton University, Princeton, NJ 08544, USA

¢ Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2J W29, CA

+ various ways how to expand it

2-1oo
E “ B Avey” =
) —
<]<k<l<
ng, ke, lr: J

Properties of the loop integrand =
A
+ symmetric function of all loop lines AB; e =
+ the only poles are: (AB;j j+1) or (AB;AB;) Z4 Zs

+ cuts in momentum twistor space: localizing AB; - intersection with other lines



AMPLITUDE LOGARITHM

As we learnt from BDS ansatz logarithm of the amplitude is a special
function with mild IR divergence

= cus 1
M, =3 at fO ()M (le) + O + EP () = L2 4 0 ()

€ €
[=1

[t makes sense to construct the integrand for the logarithm from
products of amplitudes, which makes this property manifest

two-loop 4pt example: 7\ (4AB;, Z,) = I\ (AB,CD) — I\" (AB) x 7\ (CD)

2 3 1 2

n not a planar object!
1 v ’ =) _ (1234)3((AB13)(CD24) + (AB24)(C'D13))
. 2 2 * (AB12)(AB23)(AB34)(AB41)(ABCD){CD12)(CD23)(CD34)(CD41)
-5 X
2 4 3 4 3 (Arkani-Hamed, Bourjaily, Cachazo, Trnka, 2010) (Drummond, Henn, 2010)

IR property: vanishing in collinear regions 2z, — Z,, Zp — 7 + aZs

in fact, only non-zero residue when we move all loop lines in the collinear region



AMPLITUDE LOGARITHM

We need to integrate over all loops to get IR divergence

Can we extract an IR finite function from the integrand?

i' L (51, 4 L) 4 rational function

| integrate over /f,

Lr(b1.,... b7 _ ioht 2 functi
L( L » UL 1) 4+ Weig HiEton weight (2L-2) function

\L integrate over £, q . .
4pt: single cross ratio
all are —¥ : ; P 5

IR finite ~, integrate over fo Fr(z)

e . (AB12)(AB34)
@ 4 © = (AB23)(AB14)

integrate over {4

In M . 4— IR divergent, BDS ansatz



GAMMA CUSP

But the leading IR divergence is predicted to be known to
all loop orders -- exact formula  ~°"SP(g)  (seier, seen, staudacnes 2008)

Integrability of the planar N=4 SYM theory

¢ Itis an input into a number of computational methods

¢ Fascinating tunction of coupling: predicted by BES equation

872 8874 7370 31n2
CUSP () = Qg% — —— gt — 6 _16 421 %3 +... =929 —
7P (g) g 59 T (630+ng+ 9= 5
(Basso, Korchemsky, Kotanski 2007)
very special property: <
only single zeta values S —
y sing 4 E -

at weak coupling n=1



WILSON LOOP DUALITY

Same object appeared in the study of Wilson loops

2 ’ (Wg (21,22, 23, 24)L(20)) _ g° (1234)2
(Wg(x1, 29, T3,24)) 2 (AB12)(AB23){AB34)(AB41)

F(g,2)

Lagrangian ** weak coupling: expansion in 4?(known up to 3-loops)

insertion (Alday, Henn, Sikorowski, 2013) (Henn, Korchemsky, Mistlberger 2019)

+ strong coupling: expansion in 1/g
1 (Alday, Buchbinder, Tseytlin, 2011) (Engelund, Roiban, 2011, 2012)

4 f(g,z>=g(zf1)3 2(1—2) + (2 + 1) log 2] + -~

subleading term impossibly hard to calculate

We can extract I'cusp(g) from this function without hitting a divergence

(Alday, Henn, Sikorowski, 2013) (Henn, Korchemsky, Mistlberger, 2019) (Arkani-Hamed, Henn, JT, 2021)

9, 1 [T .
g—Fcusp(g) — __/ dng(gaZ — ez¢)
dg T ) .



QUESTIONS

Big Question 1: Can we derive the gamma cusp formula
from amplitudes? How is it related to the structures in
the loop integrand / combinatorics of the Amplituhedron?

Big Question 2: Is it possible to find the exact solution for
full amplitudes, non-trivial functions of kinematics?

¢ Resummation of perturbation theory?

e Positive geometry, cluster algebras etc. at strong coupling?

Our method: different organization of perturbation
theory using negative (Amplituhedron-like) geometries



AMPLITUHEDRON

(Arkani-Hamed, JT 2013)
(Arkani-Hamed, Thomas, JT 2017)



AMPLITUHEDRON

In 2013 together with Nima we found a new geometric construction
for planar integrands in N=4 SYM

(Arkani-Hamed, JT, 2013) (Arkani-Hamed, Thomas, JT, 2017) (Ferro, Lukowski, 2022)

This is a generalization of our earlier work on the on-shell diagrams
and positive Grassmannian and Hodges” polytopes

(Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, JT, 2012) (Hodges 2009) (Arkani-Hamed, Bourjaily, Cachazo, Hodges, JT, 2010)

General Amplituhedron is

AE—IOOP 0 curvy: complicated
Tree-level amplitudes _-¥ , boundary structure
and loop integrands (Franco, Galloni, Mariotti, JT, 2014)
(Lukowski, Moerman, 2020)
: (Dian, Heslop, Stewart, 2022)
“Volume”: differential form \
with logarithmic singularities Amplituhedron defined

?
on the boundaries of the space by a set of inequalities How to calculate ()

in the kinematical space



AMPLITUHEDRON

In 2013 together with Nima we found a new geometric construction
for planar integrands in N=4 SYM

(Arkani-Hamed, JT, 2013) (Arkani-Hamed, Thomas, JT, 2017) (Ferro, Lukowski, 2022)

This is a generalization of our earlier work on the on-shell diagrams
and positive Grassmannian and Hodges” polytopes

(Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, JT, 2012) (Hodges 2009) (Arkani-Hamed, Bourjaily, Cachazo, Hodges, JT, 2010)

A”

Triangulation in terms of “simplices”: difficult to do in general




AMPLITUHEDRON DEFINITON

(Arkani-Hamed, JT 2013) (Arkani-Hamed, Thomas, JT 2017)

Amplituhedron geometry is labeled by 4 labels:

An k. l.m
number of external legs / / T "dimensionality” of kinematics,

we assume m=4

helicity number,
we restrict to k=0
(MHYV amplitudes)

number of loops

Geometry = set of inequalities for kinematical variables
which define a geometric region

Amplitude (tree-level, loop integrand) = canonical form
calculates a volume of the region



POSITIVE GEOMETRY

Space of dimension D given by polynomial inequalities

(kinematics) -> (parameters z; )

Fr(z;) >0 Canonical form 2
with logarithmic singularities
on boundaries

d
QD ? CEQD_

rz=0 I |
AN

form on the boundary

Example: Fi(z) =2 —x1 >0
line segment op(x) =22 —2 >0 0 — dx (1 — x2)
———o (x — x1)(x — x2)




POSITIVE GEOMETRY

Triangle
p— ()7
y<l-—x z:EOC;Ozy)
x>0 // |
/
y >0
dx dy canonical form
() = ,
ij(l — 1T — y) / on a line XZ(O,l)
check we get lower Res,_of) = dz

dimensional form correct: r(l—x)



POSITIVE GEOMETRY

Polygon

. r=(0,1)
7 y = (0,14 z)
we can write

r <1
x > 0 O — n(ﬂf, y)
ry@ — 1)y —a — 1)
y >0

Two ways to fix the numerator



POSITIVE GEOMETRY

x>0

Triangulation

y<l+ux

r <1

spurious line: y=2x

divides the space into
two triangles



POSITIVE GEOMETRY

Triangulation

y<l+ux

spurious line: y=2x

divides the space into
two triangles

r <1
2dx dy

= (z— Dy(y — 2x)

1+ 2)dzd
Q=0 40, - LTo)dedy

ry(r —1)(y —z —1)

spurious pole cancels




FOUR-POINT AMPLITUHEDRON

(Arkani-Hamed, JT 2013) (Arkani-Hamed, Thomas, JT 2017)

Geometry of ¢ linesin P°

each line D; = <(1) Zj]j. ? —zy] )
J J

Definition of the L-loop space:

TiyYj,Wj, 25 > ()

(x5 — ox) (25 — 2x) + (w5 —wi)(y; — yx) <O

Triangulation: divide the geometry into "simplices" -- very hard

Known triangulation: loop BCFW recursion relations

(Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, JT 2010) (Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, JT 2012)

(Galashin, in progress)
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(Arkani- likov, JT 2012)




NEGATIVE GEOMETRIES

(Arkani-Hame



AMPLITUHEDRON

General story:

Tl=loop — () 4‘ Integrand always well-defined:
V nice rational function

Then later we would like to integrate:

negative geometries

| this talk
Af;—loop — /Iﬁ_IOOp — 00 /



AMPLITUHEDRON

General story:

Integrand always well-defined:

Iﬁ—loop — O
V nice rational function

Then later we would like to integrate:

negative geometries

/] /] /' this talk
An— oOop — /In— oOop — OO

\ deformed Amplituhedron

not in this talk: work with Nima Arkani-Hamed,
Johannes Henn, Woijciech Flieger, Anders
Schreiber, Melvyn Nabavi



AMPLITUHEDRON

General story:

Iﬁ—loop — (0 <

always well-defined:
ational function

Then later we would |

tive geometries
this talk

{—loop __ {—
A, T = / 1" See Melvyn's
Gong show P |
¢ work with Nima Arkani-Hamed,

T————jehanmestHHenn, Wojciech Flieger, Anders
Schreiber, Melvyn Nabavi

ned Amplituhedron



NEGATIVE GEOMETRIES

(Arkani-Hamed, Henn, JT, 2021)

Cousins of the Amplituhedron: negative geometries

2,
QL — .\‘:': ::'- - "\.’-:" ﬁL = Z(—I)E(G)
‘\ :":(: ‘| :' G
G0N
single Amplituhedron sum over geometries for the
geometry for the amplitude logarithm of the amplitude

e Each graph: positive geometry given by inequalities
¢ Vertex = loop momentum: "one-loop Amplituhedron”
(AB;12), (AB;23), (AB;34), (AB;14) > 0, (AB;13), (AB;24) < 0
¢ Edges = "quadratic” constraints fewer edges
blue: (AB;AB;) >0  red: (AB;AB;) <0 = simpler geometry

¢ Differential form for each geometry = integrand



NEGATIVE GEOMETRIES

(Arkani-Hamed, Henn, JT, 2021)

Individual negative geometries: no physical meaning

e "Basis" for the logarithm of the amplitude

e Designed to have correct IR properties

. . . 1.
integration gives — divergence

i €
never true with standard diagrams

1 1

Jotetere s o T : J’B%** . Very rough relation between
B geometries and diagrams:
, , internal propagators = quadratic

; & : &, 4 @% | DS inequalities in the geometry




LOOPS OF LOOPS (CYCLES)

General Amplituhedron geometry

Qtree — _ d/.L ’ NG
¢ ® ® Hz D; - Hlinks<ABiABj >

Natural hierarchy of geometries: more “loops” = more complicated

0 = o—o 93—/\. e o o

ﬁtree
2 Ql —loop

m-IXIISIISDEIé

~3—loo 21
Q op op




TREE-LEVEL /ZERO-CYCLE

(Arkani-Hamed, Henn, JT, 2021)

Tree-level approximation: only keep geometries with tree graphs
We found a closed form for the numerator of any tree graph!

The numerator takes a factorized form
du - Ng _
Quee — _ Ng = (1230041 < TT NO)
. < D T (455 o =BTl LN

of the 2-loop numerators
Ny = (AB13)XAB;24) + (AB;24)(AB;13)

Same formula does not hold for a loop graph

_ L+1 _(_—)
Ne = (1234)Y"* x H Ny; V\ satisfies many consistency
links .
constraints but not all

(vanishing on double pole)

Need to find a specific correction which
does not spoil any cuts we already matched



ONE-CYCLE

(Brown, Oktem, Paranjape, JT, 2023)

One-cycle: we found a numerator for a general one-cycle graph
+ First step: find an integrand for a graph with a closed loop

Write the numerator as
NG — H N’L(j_) + Rloop

links \

extremely constrained,

For example: for 3-cycle we have two terms write ansatz of all terms

R

loop

= c1{(AB112)(AB34)(AB512)(AB234)(AB312)(AB334)+. ..}
+ co{(AB112)(AB;34) ((AB212)(AB334)+(AB312)(AB234) ) ((AB513)(AB324) +(AB313) (ABy24) ) +. . .}

Solve from the double pole cancelation: ¢; =4, ¢; = —1 Generalized to any cycle

+ Second step: add tree branches

Ne = ( H Nz'(j_) +R100p) X H Nz’(j_)

loop links other links

Solved for any one-cycle graph!



HIGHER CYCLES

We do not know how to find the numerator for a general higher-cycle graph
= as hard as solving the four-point problem completely

Usetul strategy: loop decomposition denote: @—-—e = N/
1 2 1 2 1 2 1 2 1 2 L 2
3 4 3 4 3 4 3 4 3 4 3 4
/‘ N T N _y new two-loop object
NONSONGING NG RIS« NGNS RO < NGNS RISV < N POy

——— ——

tree objects
one-loop (and tree) objects

Only few cases solved at the moment, new ideas needed



FULL FOUR-LOOP RESULT

(Dixon, Oktem, Paranjape, JT, Xu, Zhang, to appear)

Using a hybrid Amplituhedron/generalized unitarity method we
can construct the integrand for all L=4 negative geometries

But this is not really a power of this method (unless we solve
everything): as mentioned data available up to 12-loops



IR FINITE FUNCTION
FROM NEGATIVE GEOMETRIES



INTEGRATING GEOMETRIES

(Arkani-Hamed, Henn, JT, 2021)

Wilson loop: freeze one of the loops and integrate over others

Fr_1(z) from

Simplest one-loop result: @—e = [7* +log” 2]
Three-loop result: three different contributions

— _1 [ + log z]2 |
. > Tree graphs
1

X—eo—e =—7 [72 +log® 2] x [572 + log” 2] )

o] =t () 3 (3) 3] |
+1°gz[4L3< )= (59)] -3 (51) 2 (59 -5] ) onedtoop graph
1o i () ()~ () - () -

Same loop order, tree graphs are simpler - consistent with simple integrand

/



THREE-LOOP WILS50ON LOOP

(Dixon, Oktem, Paranjape, JT, Xu, Zhang, to appear)

All contributions calculated:

—eve 1 5%
I,™(z) = 96 ( — 8C(3)H-2,0 + 4¢(3)H-1,0,0 + 2(3)Ho,0,0 + §7T2H—3,0 +mH g 5 — §7T2H—1,—3
1, 11 , 5 3 2, 5 1,
—m H_1 _ —a H_ — H —H_ — —m“H_ o9 10— —7“H_ — —7m“H_1 _
+ 87T 1,—-1 1 457T 1,0 + 727T 0,0 T 5 H1-4,00 37r 2,—1,0 127T 2.0,0 37T 1,—2,0
1 7 1
+3H _3000+2H_2_200—5H_1_-300 + §7F2H—1,—1,0,0 + 57T2H_1’0’0’0 + 6W2H0,0,0,0
1
A —4H 9 10,00 — §H —2.0,0,00 —2H_1 2000 +3H_-1,-1,00,0,0 + 2H_1,0,0,0,0,0 + 3H0,0,0,0,0,0
1, 3, 31Hp¢(5) 3 , 43 505m° 0
— —m?H_ = —19H_ S L SRH - —rtH 11
5™ H-1((3) + 5m Ho((3) = 19H1((5) + ———— + ym Hoa— s om Hog + oo + (3)

all HPLs (harmonic polylogs) of variable z
Symbol:
Symbol(I;~¢) =
1
96 (3 SB(z,z,xz,z,x,x) + 2SB(z, z,xz, x,x, 1+x) — 5 SB(z,x,z,x,1+x,z) + 3SB(z, z, xz, z, 1+x, 1+x)
+ 3SB(z, z,z,14+z,z,x2) — 2SB(z,z,z,1+z,z,1+x) — 4SB(z, z, x, 1+z,1+x, )

+ gSB(:L‘,:c, l+z,z,z,2) — 5SB(z, z, 14+x,z, x,14+x) + 2SB(z, z,1+x, x, 1—|—:L',:1;)) :



THREE-LOOP WILS50ON LOOP

(Dixon, Oktem, Paranjape, JT, Xu, Zhang, to appear)

All contributions calculated:

Symbol(I33) = 96 (15 SB(z,z,z,z,x,x) + 10SB(z,z,z,z,xz,1 + ) + 10SB(z, z,z,2,1 + x, x)
—12SB(z,z,z, 2,1 + ,1 + ) + 7TSB(z,z,z,1 + z,z,2) — 6 SB(z,z,z,1 + z,z,1 + x)
—6SB(z,z,z,1 + 2,1 + z,x) + 3SB(z,z,1 + z,z,z,z) — 2SB(z,z,1 + z,z,z,1 + x)
—2SB(z,z,1+ z,2,1 + z,x) —2SB(z,z,1 + z,1 +:1:,:1:,:1:)),

More cycles: more complicated symbol

spurious symbol letters b5(4) = if:g

Symbol(I3~9°) = { $ \‘

144 (4SB(z, z,z,z,b(4),b(4)) + SB(z,z,z,b(4),z,b(4)) + 3SB(z, z,z,b(4),b(4),z) + 2SB(z, z, z, z, z, x)
+ SB(z,z,z,z,2,1 + ) + 11SB(z, z,z, 2,1 + z,z) — 10SB(z, z,z,z,1 + z,1 + x)
+9SB(z,z,z,1 + z,z,z) + 5SB(z,z,z,1 + z,z,1 + ) — 7SB(z,z, 2,1 + 2,1 + z, z)

—4SB(z,z,z,1+z,1+ 2,1+ z) +5SB(z,z,1 + z,z,z,z) + 7TSB(z,z,1 + z,z,z,1 + x)
— SB(z,z,1+ z,z,1+ z,2) —4SB(z,z,1 + z,2,1 + 2,1 + ) — 12SB(z, 2,1 + z,1 + z,z, x)
—4SB(z,z,1+z,1 +z,2,1 4+ z) —4SB(z,z,1 + 2,1+ 2,1 + z,x)

+8SB(z,z,1+a,1+a,1+a,1+7)). It would be great to link it to spurious

cuts of the integrand



HIGHER LOOPS

(Dixon, Oktem, Paranjape, JT, Xu, Zhang, to appear)

At higher loops, the integration technology does not exist

For certain geometries, we can use a differential equation trick:

[, ®—’ = C‘ for example: —
&

AB AB

This allows us to solve classes of geometries:

~

I3 2(2) =8H0,0,0,0,0,0,0,0(2) +8Hp,0,0,0,-1,0,0,0(2)—16H000,0,-1,—1,00(2) + 8H0,0,0,0,—2,0,0(2)

— 8(3(2H0,0,0,0,-1(2) — Ho,0,0,0,0(2)) + 47 (Ho,0,0,0,-1,0(2) — 2Ho,0,0,0,-1,-1(2) X—e
1374 C D AB
+Ho0,00,—2(2))+ 10781'0 10g4(z)+% log3(z)+—:23’1 log(z)2+03,2 log(z)+D3,2‘, |
8 12774 872
C3o = —§7T2C3,2 —16¢52 + 47; s + 7r3<5 — 168(7,
677978

_ ]2 — 2
D3 = 8m(33 + 16(5,3 + 8062 — 8(3 (m(3 + 32(5) + 75600



GAMMA CUSP CONTRIBUTION

(Dixon, Oktem, Paranjape, JT, Xu, Zhang, to appear)

We can extract the contribution to gamma cusp from full function

10 1 3478
= (1655 + 96Cs.2 — 872CE — 352CsCs + o)
® . 10 ’ ’ 3 567
© |

Multiple Zeta Values (MZV) (a4 = Z

ni>no >0

1
ning
Simple analysis suggest that higher cycles: Cay,as,...,a0 1

They all cancel in the Wilson loop!

Integrability? How is this related to the integrand/geometry?

This is something totally hidden in the negative geometry expansion
(also likely in Feynman diagrams -- there are no data)



GAMMA CUSP CONTRIBUTION

We can extract the

AB

Simple analysis st
They ¢
Integrability? Ho

This is something

in Gong show

ear)

sp from full function

1 2 .9 34778
387r C3 — 352¢5¢3 + £67 )
1

Ca,,b — Z ab
ni>no >0 n1n2

1,A2,...,Qp 11

oop!

d/geometry?

ometry expansion

(also likely TrFeynmanraragrams==thererare no data)



RESUMMATION

(Dixon, Oktem, Paranjape, JT, Xu, Zhang, to appear)



RESUMMATION

Planar N=4 SYM is special: no non-perturbative contributions
szact _ Z g2LM£lL)
L=0

+ approximate amplitude at each loop order and resum to all loops

+ compare to strong coupling expansion (if available)

Only known (to me) example is the ladder resummation

(Broadhurst, Davydychev, 2010)

r + - . - ~U e_g fOI' g >> 1
/

P Pa
exponentially suppressed vs linear growth

We can try to resum our tree contributions (if possible to integrate all of them)



ZERO CYCLE CONTRIBUTIONS

(Arkani-Hamed, Henn, JT, 2021)

Let us only consider "tree' graphs (no internal cycles)

Firee(9,2)= ® —(9°) ®—o + (47 {@—o—o @<}

SNSRI EWA)

Differential operator acting on the graphs (integrand)

box operator differential equation for the generating function
Z3 Z3 Firee (9, Z) = three(g’Z)
1 H z
on x5 “d — Ts T4 §(Zﬁz)2Htree(gg ) + g e’ tr ce(9:2) — =0
Zo o1 Z1

solve with boundary conditions

l A2 A
ftree(g, ) —

2) =
2 (LA 2
Same operator does not work for loop graphs: g* (22 +1)

search for its generalization A
where — =1

2gcos~5-




STRONG COUPLING

(Arkani-Hamed, Henn, JT, 2021)

A? 24
g% (24 +1)?

Firee(9,2) =

How good is this approximation to the exact result?

Naively, we expect it to be very bad — for infinite L vanishing part of diagrams contribute

Easy to expand at strong coupling:
P misses the leading term

1
Firee(g,2) = — - O <§>

(14 2)? ™% has 1/g expansion

For I'cusp(g) we get even more surprising result:

2g — 2182 | ... —p exact
Ftree (g) — o
% g—1+... -y OUT tree approximation

qualitatively correct behavior at strong coupling



OPEN QUESTIONS

How do we reconstruct F(g,z) ~ g behavior at strong coupling?

And what about cusp anomalous dimension?

8
Tiree(g) = g (; + M 43y ) = 2g
b
~ 2.99 Is it just a small negative correction?

Do tree graphs dominate or are there massive
cancelations between various orders?

Can we derive BES equation from amplitudes?

Natural next step: one-cycle resummation --- too hard at the moment



TRIANGLE RESUMMATION

(Dixon, Oktem, Paranjape, JT, Xu, Zhang, to appear)

Consider classes of geometries starting with triangle:
they also satisfy the same differential
equation with a source term
X—eo—e

We have an explicit result for this sum (not very compact formula)

Gamma cusp calculation, strong coupling expansion

vHP(g) ~ g5 too strong but "partially summable”

We can now extend it to box being a "source" -- same feature



HOW TO RESUM?

Question: which negative geometries we can resum?
Gamma cusp: are there any which dominate in the computation?

The exact strong coupling behavior is something between what
we have and a geometric series:

Geometric series of diagrams suppressed at strong coupling

t t iI > 1 1
g2® +g6 +912 + g18 O — 6}’ iz k — ~N ——
% kz:;)(g ) 1—¢°Fui(z)  9¢°

In any case, this is a great playground -- nice resummation toys,
something we do not have with normal diagrams




CONCLUSION



SOLVING N=4 5YM THEORY

Nice IR finite object (amplitude/Wilson loop): % 3=
new expansion using negative geometries ;

Z3

At four-point: function of a single cross-ratio, some data available
at weak and strong coupling, our method: negative geometries

XN

MZV in gamma cusp -->how do they cancel in gamma cusp?

integrability / geometry connection

Can we find a subset of negative geometries that dominate at
strong coupling? Derive BES formula for gamma cusp?






