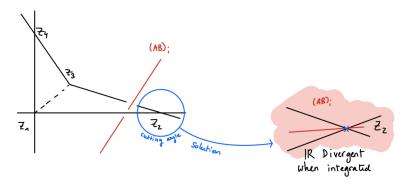

The deformed Amplituhedron

Melvyn Nabavi, Prof. Jaroslav Trnka UC Davis

November 8, 2025

Planar $\mathcal{N}=4$ SYM and the Amplituhedron


4-pt L-loop Amplituhedron ($\det(\ldots) \equiv \langle \ldots \rangle$):

$$\langle (AB)_i Z_j Z_{j+1} \rangle > 0 \qquad \langle (AB)_i (AB)_j \rangle > 0$$

L-Loop amplitude integrand = "logarithmic form" of L-loop Amplituhedron

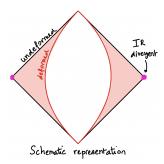
IR divergences in the Amplituhedron

• $(AB)_i$ cuts a line \leftrightarrow taking a residue on the "logarithmic form"

Cut line (Z_1Z_2) and (Z_2Z_3)

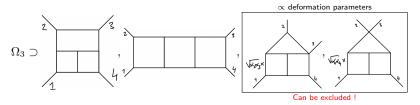
 \implies Loop lines can access IR divergences (collinear regimes): $l_i \propto p_2$

Solution: deforming the geometry


• Deforming with $\{\alpha_i\}$:

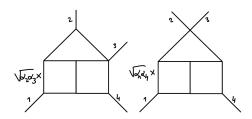
$$\begin{split} &\langle (AB)_i Z_k Z_{k+1} \rangle > 0 \to \langle (AB)_i \widehat{Z_k Z}_{k+1} \rangle > 0 \\ &\text{with} \\ &\widehat{Z_k Z}_{k+1} = Z_k Z_{k+1} - \alpha_i Z_{k+2} Z_{k+3} \end{split}$$

Conjecture:


"Logarithmic form" of DAmplituhedron = Amplitude integrand on the Coulomb Branch

[Arkani-Hamed, Flieger, Henn, Schreiber, Trnka]

Main properties of the integrand


- Result known at 1, 2 and 3 loops (using cut equations).
- Amplitude integrand stays planar.
- e.g three loops:

exactly like undeformed case but with massive propagators.

Current questions

- Is planarity preserved at all loops? How does the geometry know?
- All new planar contributions excluded at all loops? Generalized dual conformal symmetry?

Thank you for your attention!