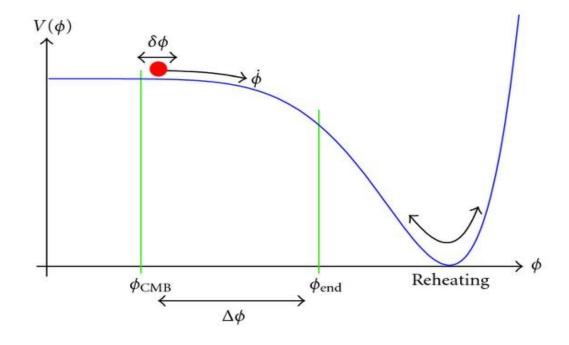
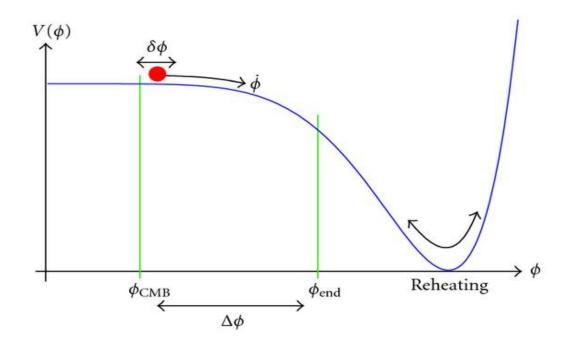

Soft Gravitons during inflation

Kshitij Gupta UC San Diego


Review of inflationary perturbations

 We have this classic picture of inflation – a ball rolling down the hill


Review of inflationary perturbations

• The slow rolling of the field describes the quasi de Sitter expansion of the Universe

Review of inflationary perturbations

• The slow rolling of the field describes the quasi de Sitter expansion of the Universe g_i

Broken symmetry

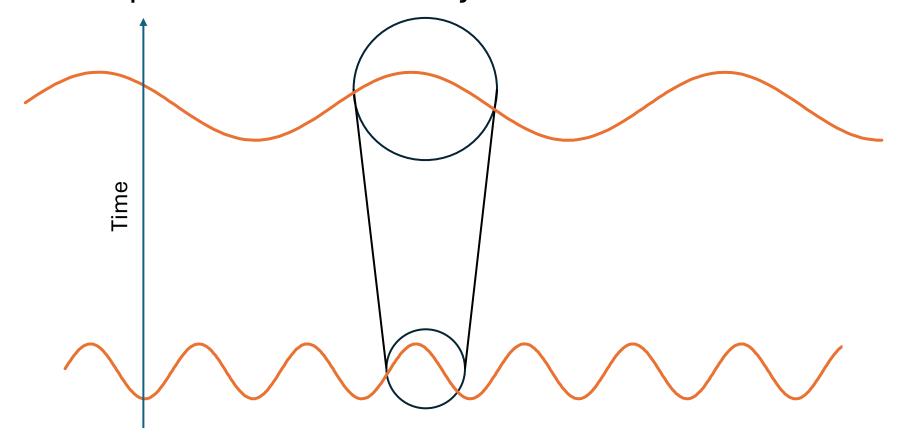
• During slow roll, we have that $\dot{\phi}$ approximately constant, and hence

• Due to presence of the clock, we have that time translations are broken spontaneously.

This is the starting point behind the EFT of Inflation.

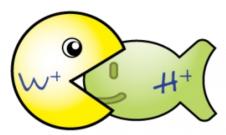
Cheung et al. (2007)

EFT of Inflation


• EFT of Inflation describes the fluctuations of a spontaneously broken time translation symmetry on a background de Sitter

 We construct it in analogy to SSB of gauge theories, and it shares common features.

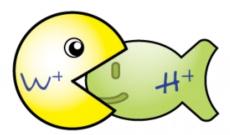
 At high energies, we expect the Goldstone boson to decouple from the gauge boson (gravity) Green, Huang, KG (2023)


Modes redshift

• We are usually interested in properties of soft fluctuations, because expansion continuously redshifts modes.

Low Energies = Unitary gauge

 At low energies, gauge fields eats the Goldstone to become a massive gauge boson



• Similarly, we want to describe the fluctuations in a gauge where gravity has eaten the Goldstone boson:

$$g_{ij} = a^2(t)e^{2\zeta(x,t)}\delta_{ij}$$

Low Energies = Unitary gauge

 At low energies, gauge fields eats the Goldstone to become a massive gauge boson

• Similarly, we want to describe the fluctuations in a gauge where gravity has eaten the Goldstone boson:

$$g_{ij} = a^2(t)e^{2\zeta(x,t)}\delta_{ij}$$

Note that we are suppressing the transverse modes!

Symmetries of ζ

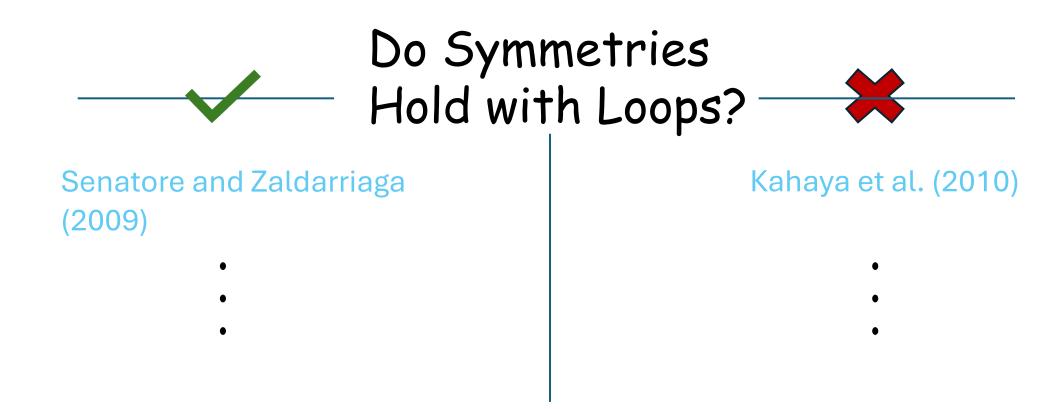
• The advantage of ζ is that it is completely fixed by its symmetries (dilation and SCTs), which it realizes non-linearly

$$\zeta(x) \to \zeta(xe^{\lambda}) - \lambda$$

 By using Ward identities, it satisfies soft theorems. The most useful one relates the 3 point functions to the 2 point functions,

$$\lim_{k_1 \to 0} \langle \zeta_{\vec{k}_1} \zeta_{\vec{k}_2} \zeta_{\vec{k}_3} \rangle = -(2\pi)^3 \delta^3(\sum_i \vec{k}_i) P_{k_1} P_{k_3} \frac{d \log k_3^3 P_{k_3}}{d \log k_3} , \quad \langle \zeta_{\vec{k}_i} \zeta_{\vec{k}_j} \rangle = (2\pi)^3 \delta^3(\vec{k}_i + \vec{k}_j) P_{k_i}$$

Maldacena (2002)

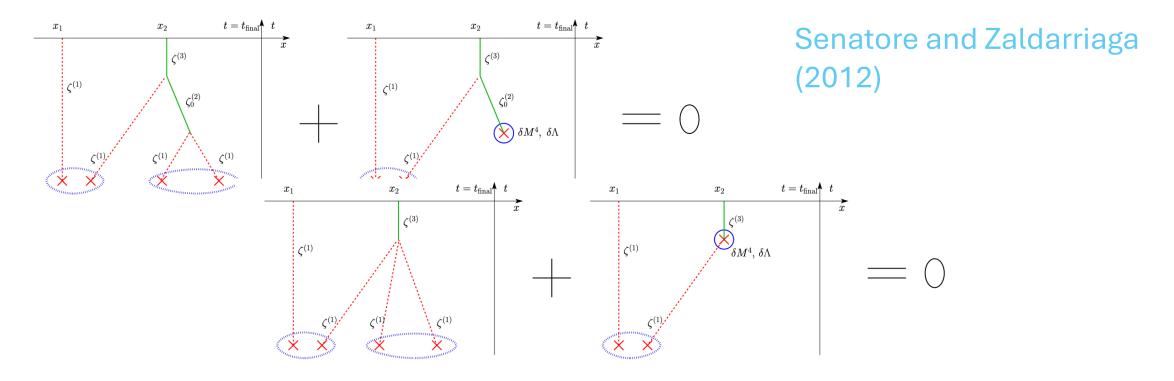

Are symmetries protected?

• The symmetries are equivalent to requiring that ζ is massless to all orders. The important question is :

Do Symmetries Hold with Loops?

Are symmetries protected?

• The symmetries are equivalent to requiring that ζ is massless to all orders. The important question is :



Diagrammatic Arguments

• Eventually, more papers came out which convinced people symmetries do hold.

Diagrammatic Arguments

• Eventually, more papers came out which convinced people symmetries do hold. However, highly diagrammatic :

Why the issue?

• Two main issues – didn't have a better technical understanding of the soft structure of de Sitter theory.

 Also, calculating loops in de Sitter has been plagued with different choices of regulators, which muddles up the the situation more

Soft de Sitter EFT

• I have worked on understanding the soft structure of inflation from an EFT approach, using Soft de Sitter EFT. Cohen and Green (2020)

Soft de Sitter EFT

• I have worked on understanding the soft structure of inflation from an EFT approach, using Soft de Sitter EFT. Cohen and Green (2020)

• From power counting and symmetries, we can write down the action and analyze the soft structure directly.

 We can also regulate loops unambiguously in the EFT in a dim reg manner

What we get?

• We can use RG analysis without complicated diagrammatics to show that to all orders the symmetries of ζ are preserved.

• We can prove that the transverse tensor modes are also massless.

 We can also verify that in the presence of additional heavy spectator fields, our results still hold.

Green and **KG** (2024)

Conclusion

• de Sitter has been plagued with issues and constant disagreements over IR behavior of fields, primarily due to lack of an organizing principle.

 Using Soft de Sitter EFT, we can unify a variety of different methods that reached the same answer in a clean framework.

• These tools will help us give deeper insights into further IR problems of de Sitter (eternal inflation, tails of distribution etc.)