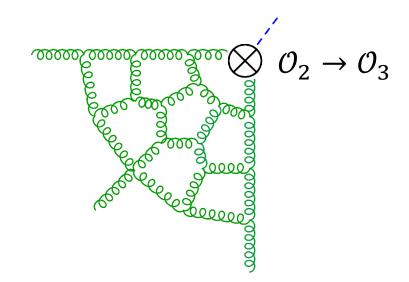
Another 8 Loop Form Factor in Planar N=4 SYM



LD, Z. Li to appear CAmps, UCLA November 9, 2025

Lance Dixon (SLAC)

LHC is QCD Machine

Copious production of quarks and gluons, materialize as collimated jets of hadrons, predicted by Quantum Chromodynamics

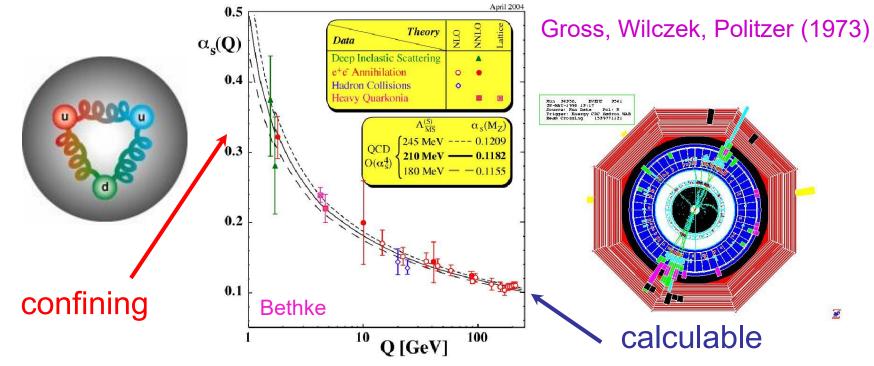
CMS Experiment at LHC, CERN

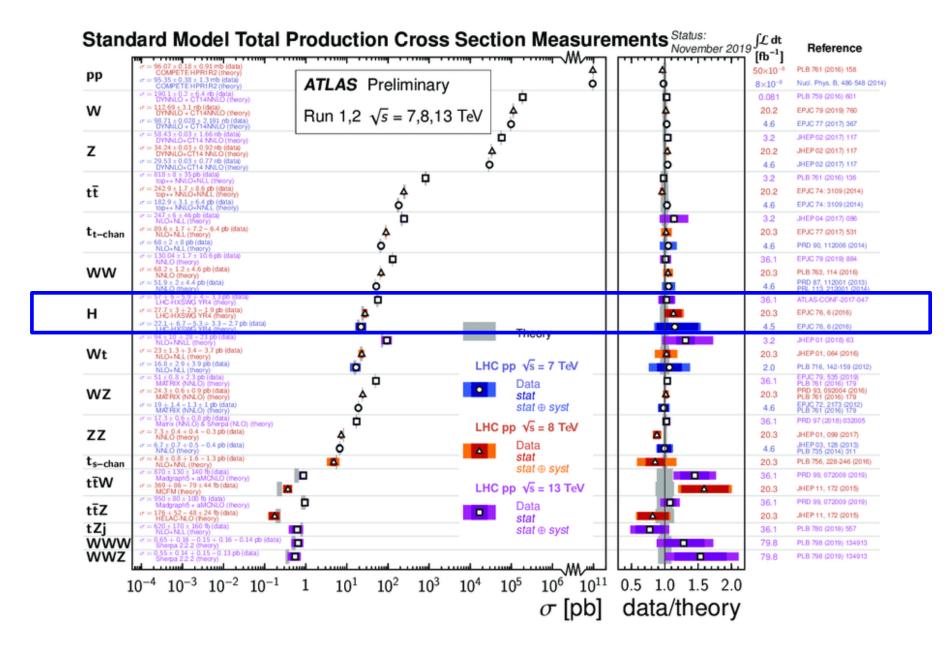
- Confrontation between experiment and theory at high precision requires higher order corrections in the strong coupling α_s
- L. Dixon Another 8 loop form factor

The Key of Asymptotic Freedom

• Gluons anti-screen charge: Interaction strength α_s for QCD is small at short distances, so we can series expand in α_s

→ perturbation theory → Feynman diagrams

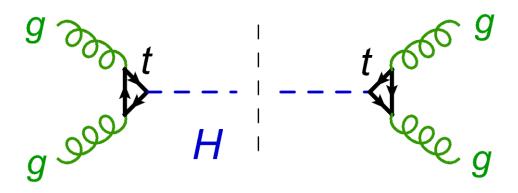




Producing Higgs bosons at LHC

Higgs boson dominantly produced by **gluon fusion**, a quantum process at "one loop", mediated by **top quark**, because **t** couples strongly to both gluons and Higgs

Leading Order (LO) cross section = |one - loop amplitude|²



• Since $2m_{top}=350~{\rm GeV}$ $\gg m_{Higgs}=125~{\rm GeV},$ interaction between gluons and Higgs is approximately local (mediated by an operator $HG^a_{\mu\nu}G^{\mu\nu}{}^a$)

Perturbative Short-Distance Cross Section

$$\widehat{\sigma}(\alpha_s, \mu_F, \mu_R) = \left[\alpha_s(\mu_R)\right]^{n_\alpha} \left[\widehat{\sigma}^{(0)} + \frac{\alpha_s}{2\pi}\widehat{\sigma}^{(1)}(\mu_F, \mu_R) + \left(\frac{\alpha_s}{2\pi}\right)^2 \widehat{\sigma}^{(2)}(\mu_F, \mu_R) + \cdots\right]$$

$$LO \qquad \text{NLO} \qquad \qquad \text{NNLO}$$

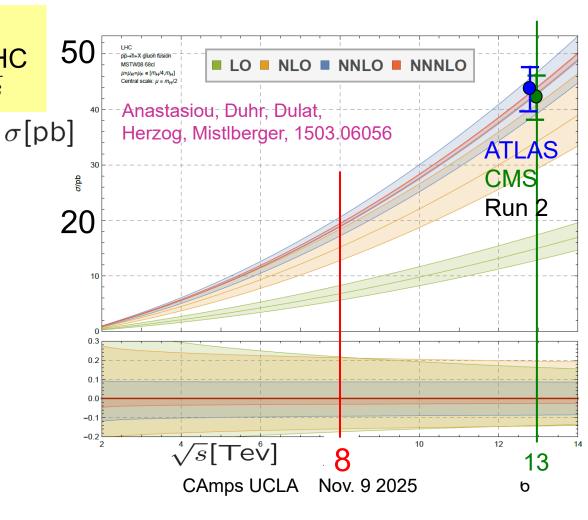
Higgs gluon fusion cross section at LHC vs. CM energy \sqrt{s}

LO terrible!

LO → NNNLO

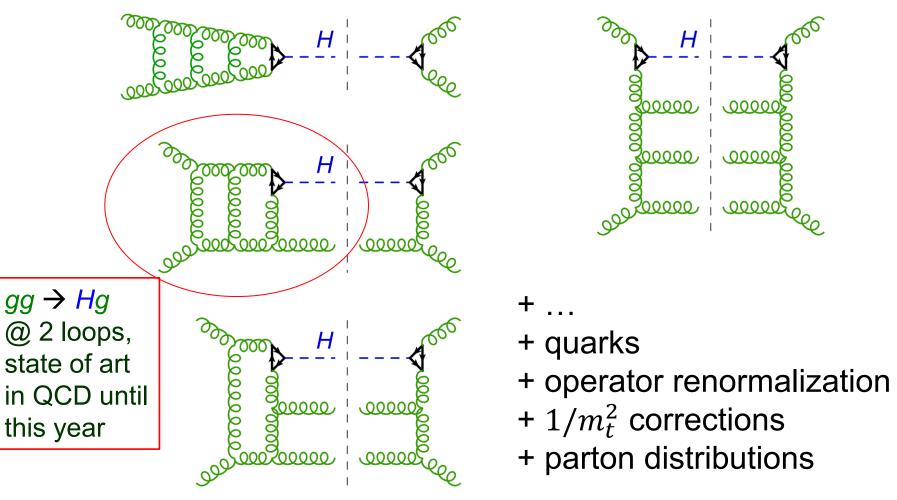
→ factor of 2 or 3 increase!

Poor convergence of expansion in $\alpha_s(\mu)$ necessitates high orders!



L. Dixon Another 8 loop form factor

Very few of the NNNLO QCD diagrams

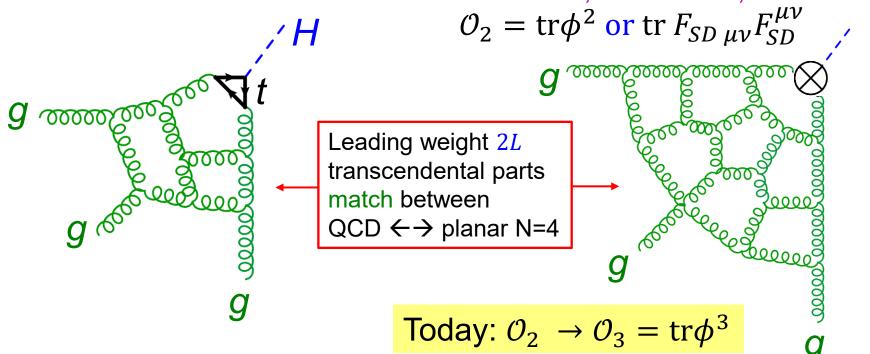


Scattering amplitudes are underlying building blocks

"Goldilocks Process" ~ gg → Hg

QCD state of art is now three loops @ large N_c (not counting top quark loop) Chen, Guan, Mistlberger, 2504.06490

Can get to **eight** loops – in analog process: 3-point form factor of $tr\phi^2$ operator in planar N=4 SYM LD, Ö. Gürdoğan, A. McLeod, M. Wilhelm 2012.12286, 2112.06243, 2204.11901



Planar N=4 SYM is great

- See Jara's talk for why
- Teaches us "something" about the leading transcendental part of QCD
- For simple processes, the answer is a
 polylogarithmic function of known weight (2L at loop
 order L) and high loop order computations can be
 relatively simple.
- We know how to remove all infrared divergences, via the BDS(-like) ansatz.
- Finite remaining functions $\mathcal{E}_3^{(L)}$ for $\mathrm{tr}\phi^2$; $\mathcal{E}_{3,3}^{(L)}$ for $\mathrm{tr}\phi^3$

${\rm tr}\phi^3$ form factor was known to 6 loops

Basso, LD, Tumanov, 2410.22402

- 3 loops agrees with integrand-based computation Henn, Lim, Torres Bobadilla, 2410.22465
- 6 loops based on amplitude bootstrap, with exactly the same function space \mathcal{C} as for the $\mathrm{tr}\phi^2$ form factor, and boundary conditions provided by the FFOPE

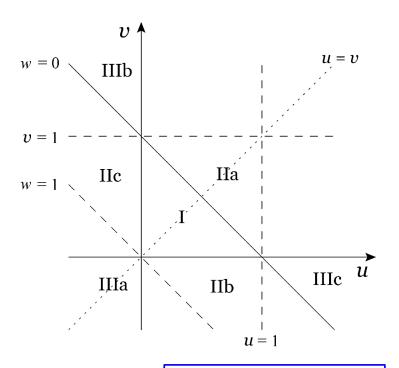
Sever, Tumanov, Wilhelm, 2009.11297, 2105.13367, 2112.10569; Basso, Tumanov, 2308.08432

• The fact that the same function space works for $tr\phi^2$ and $tr\phi^3$ is not at all obvious

3-point form factor kinematics is two-dimensional

$$k_1 + k_2 + k_3 = -k_H$$

$$s_{123} = s_{12} + s_{23} + s_{31} = m_H^2$$



N=4 amplitude is S_3 invariant

L. Dixon Another 8 loop form factor

$$s_{ij} = (k_i + k_j)^2$$
 $k_i^2 = 0$

$$u = \frac{S_{12}}{S_{123}}$$
 $v = \frac{S_{23}}{S_{123}}$ $w = \frac{S_{31}}{S_{123}}$

$$u + v + w = 1$$

I = decay / Euclidean

IIa,b,c = scattering / spacelike operator

IIIa,b,c = scattering / timelike operator

 $D_3 \equiv S_3$ dihedral symmetry generated by:

a. cycle: $i \rightarrow i + 1 \pmod{3}$, or

$$u \rightarrow v \rightarrow w \rightarrow u$$

b. flip: $u \leftrightarrow v$

Map polylogs to symbols

Iterative differentiation of a polylogarithmic function *F* n times for a weight *n* function,
 can be used to define its **symbol**:

["ln" is implicit in s_{i_k}]

$$\mathcal{S}[F] \equiv \sum_{s_{i_1}, \dots, s_{i_n} \in \mathcal{L}} F^{s_{i_1}, \dots, s_{i_n}} s_{i_1} \otimes \dots \otimes s_{i_n}$$

where s_{i_k} are **letters** in the symbol **alphabet** \mathcal{L} and $F^{s_{i_1},\dots,s_{i_n}}$ are just rational numbers (often integers!) Goncharov, Spradlin, Vergu, Volovich, 1006.5703

Common alphabet for $tr\phi^2$ and $tr\phi^3$

Let
$$u = \frac{s_{12}}{s_{123}}$$
, $v = \frac{s_{23}}{s_{123}}$, $w = \frac{s_{31}}{s_{123}} = 1 - u - v$
Then $\mathcal{L} = \{a, b, c, d, e, f\}$

where
$$a = \sqrt{\frac{u}{vw}}$$
, $b = \sqrt{\frac{v}{wu}}$, $c = \sqrt{\frac{w}{uv}}$, $d = \frac{1-u}{u}$, $e = \frac{1-v}{v}$, $f = \frac{1-w}{w}$

• Symbols of $tr\phi^2$ form factor $\mathcal{E}_3^{(L)}$ simplify (remarkably) at L=1 and 2 loops, to just 6 and 12 terms:

$$\mathcal{S}\left[\mathcal{E}_{3}^{(1)}\right] = (-2)[\ b\otimes d + c\otimes e + a\otimes f + b\otimes f + c\otimes d + a\otimes e]$$

 $\mathcal{S}\left[\mathcal{E}_{3}^{(2)}\right] = 8[b\otimes d\otimes d\otimes d + c\otimes e\otimes e\otimes e + a\otimes f\otimes f\otimes f + b\otimes f\otimes f\otimes f + c\otimes d\otimes d\otimes d + a\otimes e\otimes e\otimes e] + 16[b\otimes b\otimes b\otimes d + c\otimes c\otimes c\otimes e + a\otimes a\otimes a\otimes f + b\otimes b\otimes b\otimes f + c\otimes c\otimes c\otimes d + a\otimes a\otimes a\otimes e]$ (really only 1 and 2 terms, plus images under dihedral symmetry)

Low loop $tr\phi^3$ symbols

• Symbols of $\operatorname{tr} \phi^3$ form factor $F_{3,3}^{(L)}$ at L=1,2 loops are just 2 and 18 terms, plus D_3 dihedral images:

$$\mathcal{S}\left[\mathcal{E}_{3,3}^{(1)}\right] = a \otimes b - a \otimes a + \text{dihedral}$$

The bootstrap

Combines:

- 1. knowledge of the polylogarithmic function space (steal from ${\rm tr}\phi^2$)
- 2. empirical multi-final entry conditions (similar to $tr\phi^2$)
- 3. leading and next-to-leading discontinuities (in bulk!)
- 4. the FFOPE at level of "one flux tube excitation" (fixes collinear limit of the function)

1. Function space from $tr\phi^2$

- Symbol alphabet $\{a, b, c, d, e, f\}$
- Every term in the symbol starts with a, b, c; never d, e, f
- Physical reason related to causality, which dictates where branch cuts can appear: only for $(p_i + p_j)^2 \sim 0$
- 12 pairs of adjacent letters are forbidden:

```
...a \otimes d ..., ...b \otimes e ..., ...c \otimes f ...
...d \otimes a ..., ...e \otimes b ..., ...f \otimes c ...
...d \otimes e ..., ...e \otimes f ..., ...f \otimes d ...
...e \otimes d ..., ...f \otimes e ..., ...d \otimes f ...
```

- Resemble constraints from causality: Steinmann relations Steinmann, Helv. Phys. Acta (1960)
- But not really, which mystified us for a while...
- However, the relations are antipodally dual to (extended)
 Steinmann relations for the 6-gluon amplitude!!

2. (multi-)final entries

- $tr\phi^2$ symbol only ends in d, e, or f (3 final entries)
- $\operatorname{tr} \phi^2$ symbol only ends in $a, b, \operatorname{or} c$; but also $\mathcal{E}_{3,3}^a + \mathcal{E}_{3,3}^b + \mathcal{E}_{3,3}^c = 0$ (2 final entries)
- At each loop order, we learn another layer of multi-final entry conditions, e.g. by 3 loops we know that:

$$\mathcal{E}_{3,3}^{d,a} = \mathcal{E}_{3,3}^{e,b} = 0, \qquad \mathcal{E}_{3,3}^{f,b} = -\mathcal{E}_{3,3}^{f,a}, \qquad \mathcal{E}_{3,3}^{c,a} = -\mathcal{E}_{3,3}^{a,a} - \mathcal{E}_{3,3}^{b,a}$$

$$\mathcal{E}_{3,3}^{c,b} = -\mathcal{E}_{3,3}^{a,b} - \mathcal{E}_{3,3}^{b,b}, \qquad \mathcal{E}_{3,3}^{d,b} = \mathcal{E}_{3,3}^{e,a} - \mathcal{E}_{3,3}^{f,a} + \mathcal{E}_{3,3}^{a,b} - \mathcal{E}_{3,3}^{b,a}.$$

3. Leading discontinuities

Compact formula from FFOPE:

$$\mathcal{W}_{3,3}^{L}|_{T^{1} \ln^{L} T} = \int du \frac{\pi}{\cos(\pi i u)} S^{2iu} \frac{1}{L!} \left[2(\psi(\frac{1}{2} + i u) + \psi(\frac{1}{2} - i u) - 2\psi(1)) \right]^{L}$$

- Normally such formulas only hold in the collinear limit
 v → 0, but this one actually holds in the bulk (generic u, v)
 for a suitable extrapolation.
- There is only a 2-letter symbol for this discontinuity, with letters $A \equiv u/v$ and $C \equiv (1-w)/v$ and it is possible to predict it recursively to all loop orders.

3. Leading discontinuity (cont.)

After converting the leading discontinuity from $W_{3,3}^L$ to $\mathcal{R} \equiv \exp(R_{3,3})$ normalization, we find for the symbols of $\mathcal{R}^{(L)}$:

$$\begin{array}{l} \mathcal{R}^{(0)} = 1, \\ \mathcal{R}^{(1)} = 0, \\ \mathcal{R}^{(1)} = 0, \\ \mathcal{R}^{(2)} = - \operatorname{AA}, \\ \mathcal{R}^{(2)} = - \operatorname{AA}, \\ \mathcal{R}^{(3)} = -2 \operatorname{CAA} - 6 \operatorname{ACA} + 4 \operatorname{A} \\ \mathcal{R}^{(4)} = -16 \operatorname{CCAA} - 16 \operatorname{CAA} + 4 \operatorname{A} \\ \mathcal{R}^{(4)} = -16 \operatorname{CCAA} - 16 \operatorname{CAA} + 4 \operatorname{A} \\ \mathcal{R}^{(5)} = -160 \operatorname{CCCAA} - 160 \operatorname{CA} \\ \mathcal{R}^{(5)} = -160 \operatorname{CCCAA} - 160 \operatorname{CA} \\ \mathcal{R}^{(5)} = -160 \operatorname{CCCAA} - 160 \operatorname{CA} \\ \mathcal{R}^{(5)} = -160 \operatorname{CCCAA} + 320 \operatorname{AC} \\ \mathcal{R}^{(5)} = -190 \operatorname{AACAA} + 320 \operatorname{AC} \\ \mathcal{R}^{(5)} = -1920 \operatorname{CCCCAA} - 1920 \operatorname{CCACCA} - 1920 \operatorname{CCCACA} - 1920 \operatorname{CACCA} \\ \mathcal{R}^{(6)} = -1920 \operatorname{CCCCAA} - 1920 \operatorname{CCACCA} - 1920 \operatorname{CCCACA} - 1920 \operatorname{CACCCA} - 5760 \operatorname{ACCCCA} \\ \mathcal{R}^{(6)} = -1920 \operatorname{CCCCAA} + 1920 \operatorname{CCACCA} + 1920 \operatorname{CACCAA} + 1920 \operatorname{CACCAA} + 1920 \operatorname{CACCAA} \\ \mathcal{R}^{(6)} = -1924 \operatorname{CCAAAA} + 1920 \operatorname{CCACCA} + 3840 \operatorname{ACCCCA} \\ \mathcal{R}^{(6)} = -1924 \operatorname{CCAAAA} - 1224 \operatorname{CACAAA} + 3840 \operatorname{ACCCCA} \\ \mathcal{R}^{(6)} = -1920 \operatorname{CACCAA} + 3840 \operatorname{ACCCAA} \\ \mathcal{R}^{(6)} = -1920 \operatorname{CACCAA} \\ \mathcal{R}^{(6)} = -1920 \operatorname{CACCCAA} \\ \mathcal{R}^{(6)} = -1920 \operatorname{CACCAA} \\ \mathcal{R}^{(6)}$$

Solve a large system of linear equations

- At 8 loops, $1495 \times 403 = 602,485$ unknowns
- Solve mod p
- See Zhenjie's: https://github.com/munuxi/SparseRREF
- One 10 digit prime was enough to reconstruct over the rational numbers.
- Symbol level unknowns, 1251 x 403 = 504,153 of them, are all integers!

Higher loop $tr\phi^2$ and $tr\phi^3$ symbols are lengthy!

loop order L	${\rm tr}\phi^2$ symbol terms	${\rm tr}\phi^3$ symbol terms
1	6	9
2	12	105
3	636	1,773
4	11,208	44,391
5	263,880	747,837
6	4,916,466	14,637,501
7	92,954,568	????
8	1,671,656,292	????

LD, Gürdoğan, McLeod, Wilhelm, 2204.11901; Basso, LD, Tumanov, 2410.22402; LD, Z. Li, to appear

 ${\rm tr}\phi^2$: number of (symbol-level) linearly independent $\{n,1,\ldots,1\}$ coproducts $\{2L-n\}$ derivatives)

weight n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
L=1	1	3	1														
L=2	1	3	6	3	1												
L=3	1	3	9	12	6	3	1										
L=4	1	3	9	21	24	12	6	3	1								
L=5	1	3	9	21	46	45	24	12	6	3	1						
L=6	1	3	9	21	48	99	85	45	24	12	6	3	1				
L = 7	1	3	9	21	48	108	236	155	85	45	24	12	6	3	1		
L = 8	1	3	9	21	48	108	242	466	279	155	85	45	24	12	6	3	1

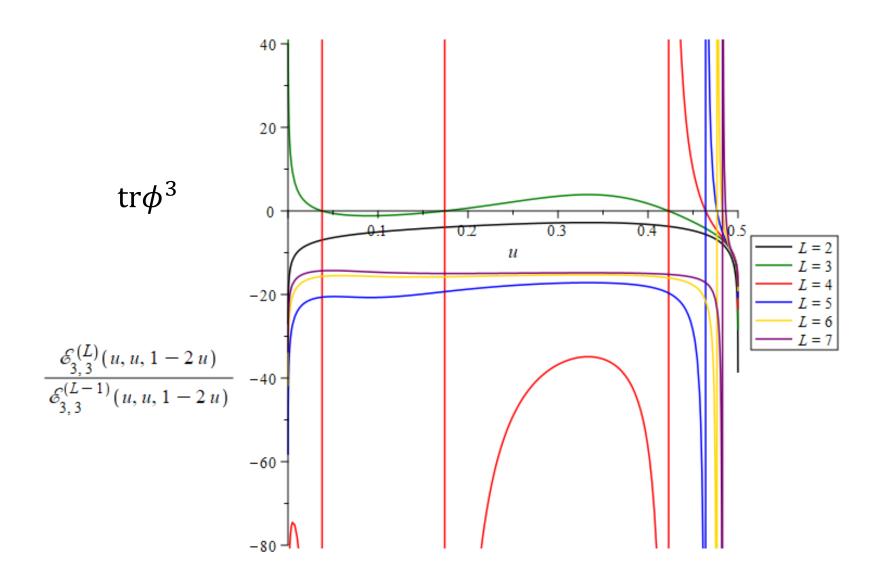
- Properly normalized L loop $tr\phi^2$ form factors $F_3^{(L)}$ belong to a small space C, dimension saturates on left
- $F_3^{(L)}$ also obeys multiple-final-entry relations, saturation on right

 $tr\phi^3$: number of (symbol-level) linearly independent $\{n, 1, ..., 1\}$ coproducts $\{2L - n \text{ derivatives}\}$

weight n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
L=1	1	2	1														
L=2	1	3	3	2	1												
L=3	1	3	9	13	6	2	1										
L=4	1	3	9	21	29	13	6	2	1								
L=5	1	3	9	21	48	57	29	13	6	2	1						
L=6	1	3	9	21	48	105	112	57	29	13	6	2	1				
L = 7	1	3	9	21	48	108	242	206	112	57	29	13	6	2	1		
L = 8	1	3	9	21	48	108	242	519	375	206	112	57	29	13	6	2	1

- Properly normalized L loop $tr\phi^3$ form factors $F_{3,3}^{(L)}$ belong to same small space C, dimension
- $F_{3,3}^{(L)}$ obeys **different** multiple-final-entry relations, saturation on right

Successive loop ratios reveal finite radius of convergence



L. Dixon Another 8 loop form factor

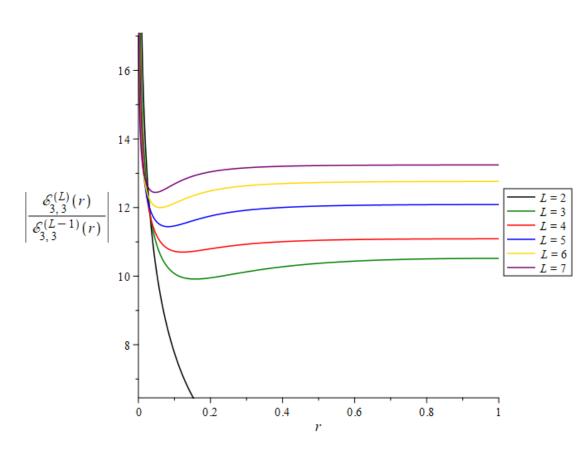
CAmps UCLA Nov. 9 2025

High energy at fixed angles

- $u, v \rightarrow \infty$, with r = u/v held fixed
- $tr\phi^2$ form factor

 $\mathcal{E}_3 \rightarrow constant$ (indep. of r)

• $tr\phi^3$ form factor $\mathcal{E}_{3,3}$ is nontrivial \rightarrow



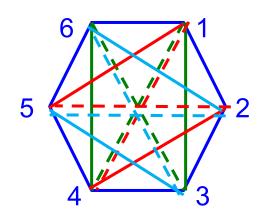
Six-gluon MHV amplitude

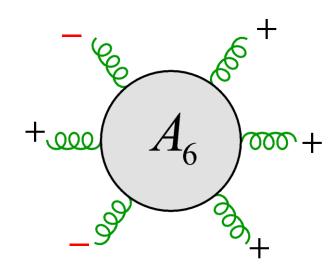
• Dual to Wilson hexagon, invariant under dual conformal transformations; it only depends on 3 dual conformal cross ratios, \hat{u} , \hat{v} , \hat{w} :

$$\widehat{u} = \frac{x_{13}^2 x_{46}^2}{x_{14}^2 x_{36}^2} = \frac{s_{12}s_{45}}{s_{123}s_{345}}$$

$$\widehat{v} = \frac{s_{23}s_{56}}{s_{234}s_{123}}$$

$$\widehat{w} = \frac{s_{34}s_{61}}{s_{345}s_{234}}$$





 D_6 dihedral symmetry: cycle (mod 6) and flip, but it acts on \hat{u} , \hat{v} , \hat{w} as $D_3 = S_3$

Parity-preserving surface: (lower-dimensional kinematics)

$$\Delta \equiv (1 - \hat{u} - \hat{v} - \hat{w})^2 - 4\hat{u}\hat{v}\hat{w} = 0$$

Antipodal duality (AD) for $tr\phi^2$

LD, Ö. Gürdoğan, A. McLeod, M. Wilhelm, 2112.06243

$$F_3^{(L)}(u, v, w) = S\left(A_6^{(L)}(\hat{u}, \hat{v}, \hat{w})\right)$$

- Antipode map S, is a "coinverse" for the Hopf algebra.
- At symbol level, it simply reverses order of all letters:

$$S(x_1 \otimes x_2 \otimes \cdots \otimes x_m) = (-1)^m \ x_m \otimes \cdots \otimes x_2 \otimes x_1$$

Kinematic map in terms of underlying variables is:

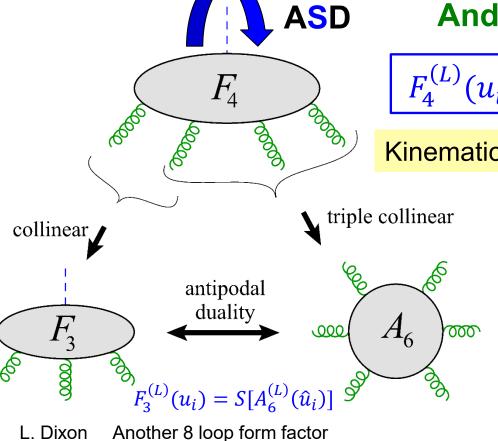
$$\hat{u} = \frac{vw}{(1-v)(1-w)}, \qquad \hat{v} = \frac{wu}{(1-w)(1-u)}, \qquad \hat{w} = \frac{uv}{(1-u)(1-v)}$$

Maps u + v + w = 1 to $\Delta = 0$ parity-preserving surface for A_6

Role of branch cuts and derivatives exchanged by S

Antipodal Self Duality

Given antipodal duality relating 2-collinear and 3-collinear limits of F_4 , natural to search for self-duality of F_4 that holds for all parity-preserving bulk kinematics



And it's there!

$$F_4^{(L)}(u_i, v_i) = S[F_4^{(L)}(\mathbf{C}(u_i), \mathbf{C}(v_i))]$$

Kinematic map C simple in FFOPE variables:

C:
$$T_2 \to \frac{T}{S}$$
, $S_2 \to \frac{1}{TS}$

$$T \to \sqrt{\frac{T_2}{S_2}}$$
, $S \to \sqrt{\frac{1}{T_2 S_2}}$

$$F_2 = 1$$

CAmps UCLA Nov. 9 2025

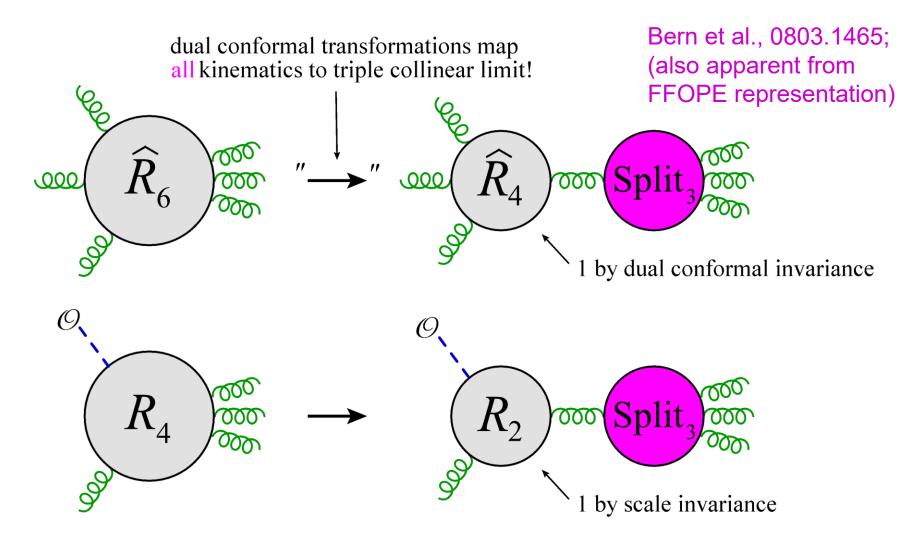
Main Open Question

- Why does $tr\phi^3$ 3-point form factor live in same space as the $tr\phi^2$ one?
- This space has powerful adjacency conditions whose only explanation is via antipodal duality.
- But the 2 final entries for $\operatorname{tr}\phi^3$, $\mathcal{E}_{3,3}^{a/b}$ and $\mathcal{E}_{3,3}^{b/c}$, are very different from the 3 final entries for $\operatorname{tr}\phi^2$, \mathcal{E}_3^d , \mathcal{E}_3^e , and \mathcal{E}_3^f , and so they map to the "wrong" first entries for the hexagon functions (A_6 amplitude). ???

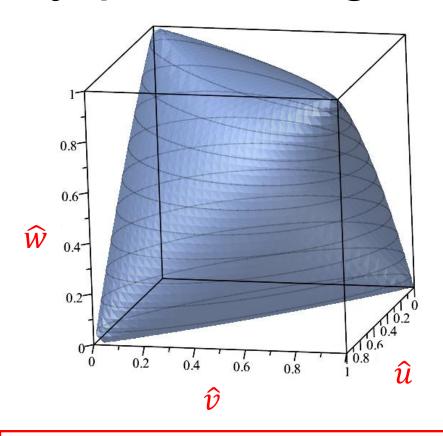
Extra Slides



Triple Collinear Limit of 4-point form factor → 6-gluon amplitude



Parity-preserving surface



$$\Delta \equiv (1 - \hat{u} - \hat{v} - \hat{w})^2 - 4\hat{u}\hat{v}\hat{w} = 0$$

 $\Delta = 0$ means that kinematics lies in a 3d subspace of 4d spacetime \rightarrow parity invariant

FFOPE kinematical variables for F_4

$$u_{i} = \frac{S_{i,i+1}}{S_{1234}}, \qquad v_{i} = \frac{S_{i,i+1,i+2}}{S_{1234}} \qquad -u_{1} + u_{3} + v_{4} + v_{1} = 1$$
$$-u_{2} + u_{4} + v_{1} + v_{2} = 1$$
$$-u_{3} + u_{1} + v_{2} + v_{3} = 1$$

$$u_{1} = \frac{T^{2}T_{2}^{2}}{(T^{2}+1)(S^{2}+T^{2}+T_{2}^{2}+1)}$$

$$u_{2} = \{1+T^{2}+\frac{S^{2}[(1+F_{2}^{2})S_{2}T_{2}+F_{2}(1+S_{2}^{2}+T^{2}+T_{2}^{2})]}{F_{2}S_{2}^{2}}\}^{-1}$$

$$u_{3} = \frac{S^{2}}{(T^{2}+1)(S^{2}+T^{2}+T_{2}^{2}+1)}$$

$$u_{4} = \frac{S^{2}T^{2}}{S_{2}^{2}}u_{2}$$

$$v_{1} = \frac{T_{2}^{2}+1}{S^{2}+T^{2}+T_{2}^{2}+1}$$

• OPE limit takes $T, T_2 \rightarrow 0$, interpolates between 2-collinear limit $T_2 \rightarrow 0$ and 3-collinear limit $T \rightarrow 0$

ASD beyond 2 loops

LD, Ö. Gürdoğan, Y.-T. Liu, A. McLeod, M. Wilhelm, 2212.02410v2; LD, Z. Li, to appear

- Bootstrapped symbol of F_4 at 3 loops, using same 113 letter (2-loop) alphabet.
- Unique result, which obeys all the FFOPE predictions we could check.
- 2 loop symbol uses only 34 of the letters [3,784 terms]
- 3 loop symbol uses only 88 of the letters [3,621,202 terms]
- 4 loop symbol uses only 88 of the letters [???? terms]
- No OPE checks yet at 4 loops, but few constraints needed to fix it.
- ASD holds in 3D at 4 loops!