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How are such identities proved?

Mathematicians studying hypergeometric functions
developed a unified formalism behind such identities,
called twisted de Rham theory



The goal of today’s talk is to
explain how the same mathematical tools
can be used to study KLT relations
and scattering amplitudes more generally
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Monodromies are properties of the integration cycles, not integrands
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Intersection numbers of cycles:

In general, intersection numbers of twisted cycles will be
non-integer once monodromies are taken into account

[Kita €4 Yoshida ‘92]
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Manifests factorization channels corresponding to boundaries of the
moduli space



We can now compute intersection numbers:



We can now compute intersection numbers:

C(2134) /\ reg C(1234) m C(1324)

—>
@ \1/ <4
e e




We can now compute intersection numbers:

C(2134) r\ reg C(1234) m C(1324)
>4 >
\/

o
w 1 24
1 1
e27is _ 1  e2mit _q

(regC(1234),C(2134)) =



We can now compute intersection numbers:

C(2134) r\ reg C(1234) m C(1324)

> - —e
w \1/ <l
N—— N——
1 1
e27is _ 1  e2mit _q

(reg C(1234),C(2134)) = e 1
e mwmLs




We can now compute intersection numbers:

C(2134) r\ reg C(1234) m C(1324)

>¢ >
\ o N \_/ »
R B
e27is _ 1 ‘  e2mit _q
(reg C(1234),C(2134)) = ;_e 1
e mwLs

(regC(1234),C(1324)) =



We can now compute intersection numbers:

|z2:z

C(2134) r\ reg C(1234) m C(1324)

> e
\ o N \/ »
I e
e27is _ 1 ‘  e2mit _q
(reg C(1234),C(2134)) = _1¢€
eZTrzs —1
mat

—€

(reg C(1234),C(1324)) = ———
e mit __ 1

LY



We can now compute intersection numbers:

|22:z

C(2134) r\ reg C(1234) m C(1324)

>4 S\
N N :
1 1
e27is _ 1 ‘  e2mit _q
(reg C(1234),C(2134)) = 177 1
e mwLs
_ewit
(regC(1234),C(1324)) = T e2mit _ |

(reg C(1234),C(1234)) =

LY



We can now compute intersection numbers:

C(2134)/ reg C(1234) m C(1324)
>-¢ > e
M 5

1" 1
e27is _ 1 ‘  e2mit _q
(regC(1234),C(2134)) = 2—|—§ 1
e wLs
_ewit
(regC(1234),C(1324)) = T e2mit _ |

(reg C(1234),C(1234)) =



We can now compute intersection numbers:

| Zo=2
C(2134) reg C(1234) C(1324)
o
0 24 =00
N—— N——
1 o 1
627r7',8 —1 | 62771'1; —1
(reg C(1234),C(2134)) = _T€
eZTrzs —1
_ewit
(regC(1234),C(1324)) = T
<regC(1234),C(1234)) = 1 — 1 — +1

627ris —1 627r73t —1



We can now compute intersection numbers:

6(2134)/ reg C(1234) m C(1324)
> >—® >-o
M e

1 1
e2Tis | | B e2mit _1q
(reg C(1234),C(2134)) = 2+_€ : feld-theory, 2;
e2Tis _

_ewit
(reg C(1234),C(1324)) = i

—1 +1
(regC(1234),C(1234)) = _1—

627ris —1 627r7lt —1



We can now compute intersection numbers:

| 20=2
C(2134) reg C(1234) C(1324)
QM >
w 1 <4 =00
1 B 1
e2mis _ 1 e2mit —1
 emis field-theory ¢ [ 1
(regC(1234),C(2134)) = | " 21 ( 5)
it ]
5 s field-theory ¢ [ 1
(regC(1234),C(1324)) = 2wt _ "2 ( t>
regC(1234),C(1234)) = =L 1 - ]

627ris —1 627r7lt —1



We can now compute intersection numbers:

| 20=2
C(2134) reg C(1234) C(1324)
ém >
w 1 <4 =00
1 B 1
e2mis _ 1 e2mit ]
 emis field-theory ¢ [ 1
(regC(1234),C(2134)) = | " 21 ( 5)
it )
5 s field-theory ¢ [ 1
(reg C(1234),C(1324)) = T e2mit _ " 2m ( t)
1 +1 field-theory ¢ (1 1
C(1234),C(1234)) = —1- T e
<reg ( )9 ( )> e2mis _ q 1 e2mit _ | 27 (s " t)



Twisted period relations: (p, ) = (p,C) (C, C) = (C, ©)



Twisted period relations: (p, ) = (p,C) (C, C) = <C, %)

A~

Choosing C = C(1234) 6 C = (C(2134) gives:



Twisted period relations: (p, ) = (p,C) (C, C) = (C, %)

A~

Choosing C = C(1234) 6 C = (C(2134) gives:

LS
e

6271'718 _

—1
Aclosed _A°pen ( 1234) ( . ) _A°pen (2134)



Twisted period relations: (p, ) = (p,C) (C, C) = (C, ©)

o~

Choosing C = C(1234) 6 C = (C(2134) gives:

LS
e

6271'728 _

—1
Aclosed _A°pen ( 1234) ( . ) _A°pen (2134)

) S
21 SINTTS



Twisted period relations: (p, ) = (p,C) (C, C) = (C, %)

A~

Choosing C = C(1234) 6 C = (C(2134) gives:

LS
e

6271'718 _

—1
Aclosed _A°pen ( 1234) ( . ) _A°pen (2134)

) S
21 SINTTS

These are the Kawai—Lewellen—Tye relations at 4-pt! [KL'T ‘85]
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= bi-adjoint scalar amplitude m(alf3)

For details see:
« “Combinatorics and Topology of Kawai—Lewellen—Tye Relations”, SM, [hep-th/1706.08527]
* “Inverse of the String Theory KLT Kernel”, SM, [hep-th/1610.04230]
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Recap so far:

Inverse of the KLT kernel describes how ditferent
assoclahedra intersect one another in the moduli space

This is the reason why bi-adjoint scalar
amplitudes appear in the KLT relations
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Here we illustrate what intersection theory has to say about this
connection at the example of 4-pt massless amplitude
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(recall that the integrands are logarithmic forms & the kinematics is massless)

In fact, this is the first sign that CHY formalism is a part of a more
general structure, which mathematicians call intersection numbers of
twisted cocycles. This is a topic on its own

For details see:
o “Scattering Amplitudes from Intersection Theory”, SM, [hep-th/1711.00469]
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To summarize, we've seen that intersection theory
plays an important role in understanding of KLT relations,
both in string and field-theory

In this language amplitudes come into three classes:

(cycle, cycle) inverse of the KLT kernel

(cycle, cocycle) open string

(cocycle, cocycle) closed string, CHY

We've also seen evidence that intersection theory
is a useful tool for the study of the connections between string
theory amplitudes and CHY formulae



Thank you!



