Muon $g - 2$ and BSM physics

General remarks and three a_μ-motivated BSM scenarios

Dominik Stöckinger, TU Dresden

Schwinger Fest, Los Angeles, 3rd December 2018
Motivation

Big questions... point to (TeV scale) new physics

EWSB, Higgs

Dark Matter?

Baryon Asymmetry?

There are also some experimental hints! (but even more null results)

- dark matter, B-anomalies, \((g - 2)_\mu\), \((g - 2)_e\)?

Motivation 2: Current a_{μ} and a_{e} — prepare for new data

\[
a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} \approx (30 \pm 8) \times 10^{-10}
\]

\[
a_{e}^{\text{Exp}} - a_{e}^{\text{SM}} = (-8.8 \pm 3.6) \times 10^{-13}
\]

\[
a_{\mu}^{\text{EW}} \approx 15 \times 10^{-10}
\]

\[
a_{e}^{\text{EW}} \approx 0.3 \times 10^{-13}
\]

Largest SUSY ($\tan \beta \to \infty$)

[Bach,Park,DS,Stöckinger-Kim '15]

Largest THDM

[Cherchiglia,DS,Stöckinger-Kim '17]
Motivation 2: Current a_μ and a_e — prepare for new data

$$a_\mu^{\text{exp}} - a_\mu^{\text{SM}} \approx (30 \pm 8) \times 10^{-10}$$

$$a_e^{\text{Exp}} - a_e^{\text{SM}} = (-8.8 \pm 3.6) \times 10^{-13}$$

In this talk:
- Relation between $g - 2$ and other observables
- Which models/scenarios can explain $a_\mu^{\text{Exp} - \text{SM}}$?
- How can these be tested/excluded?

Outcome: interesting scenarios, correlated observables, tests

Largest SUSY ($\tan \beta \to \infty$)
[Bach, Park, DS, Stöckinger-Kim '15]

Largest THDM
[Cherchiglia, DS, Stöckinger-Kim '17]
Complementarity: $g - 2$, DM, LFV/EDMs, B-physics

CP- and Flavor-conserving, chirality-flipping, loop-induced

- a^NP_μ related to Δm^NP_μ: at most $a_\mu = \mathcal{O}(1) \times \frac{m^2_\mu}{M^2_{\text{NP}}} \Rightarrow M_{\text{NP}} \lesssim 2$ TeV
Complementarity: $g - 2$, DM, LFV/EDMs, B-physics

CP- and Flavor-conserving, chirality-flipping, loop-induced

- a^NP_μ related to Δm^NP_μ: at most $a_\mu = \mathcal{O}(1) \times \frac{m^2_\mu}{M^2_NP} \Rightarrow M_NP < \sim 2$ TeV

- Dark matter, e.g. if SUSY WIMP:
 - preferred parameter space well compatible with a_μ

- LFV/EDMs $\mu \rightarrow e\gamma$, d_e . . . :
 - high mass reach, $a_\mu |\delta_{12}|$, $a_\mu |\sin \phi_{CP}| \Rightarrow |\delta_{12}, \phi_{CP}| \ll 1$

- B-anomalies $R^{D(*)}[b \rightarrow c\tau\nu], R^{K(*)}[b \rightarrow s\mu\mu]$:
 - need tree-level TeV-exchange, must not violate $\tau \rightarrow \mu\gamma$, . . .
 - \Rightarrow very restricted models, unusual flavour structure

 only possible: LQ [Sumensari'18] \sim no MFV [Bansal,Capdevilla,Kolda'18],
 - incompatible with a_μ [Crivellin,Müller,Ota'17], vector LQ might work [Crivellin,Calibbi,Li'17]
Typical behaviour: \(\sim\) chirality flip (\(\sim\) Higgs!) and masses

- **EWSM:** \(\alpha \frac{m_\mu^2}{M_W^2}\)

- **SUSY:** \(\alpha \frac{m_\mu^2 \tan \beta}{M_{\text{SUSY}}^2}\)

- **LQ:** \(g_L g_R \frac{m_\mu m_t}{M_{\text{LQ}}^2}\)
Typical behaviour: \sim chirality flip ($\sim Higgs!$) and masses

- **EWSM:** $\alpha \frac{m_{\mu}^2}{M_W^2}$

- **SUSY:** $\alpha \frac{m_{\mu}^2 \tan \beta}{M_{SUSY}^2}$

 Well-motivated theory. Also possible: dark matter

- **LQ:** $g_L g_R \frac{m_{\mu} m_t}{M_{LQ}^2}$
Typical behaviour: \sim chirality flip ($\sim Higgs!$) and masses

- **EWSM:** $\alpha \frac{m_{\mu}^2}{M_W^2}$

- **SUSY:** $\alpha \frac{m_{\mu}^2 \tan \beta}{M_{SUSY}^2}$

- **LQ:** $g_L g_R \frac{m_{\mu} m_t}{M_{LQ}^2}$

Can also involve Higgs couplings to b, c or new particles. Also possible, although difficult: B-physics.

Beware: $\Delta m_{\mu} / m_{\mu} \sim g_L g_R m_t / m_{\mu}$ restricts couplings
Typical behaviour: \(\sim \) chirality flip (\(\sim \) Higgs!) and masses

- **EWSM:** \(\alpha \frac{m^2_{\mu}}{M^2_W} \)

- **2HDM:** \(\alpha^2 \tan^2 \beta \frac{m^2_{\mu}}{M^2_H} \)

 Also possible: \(B \rightarrow D_{\tau} \nu \) [Crivellin, Heeck, Stoffer’16...]

- **rad.** \(m_{\mu} \sim \frac{m^2_{\mu}}{M^2_{NP}} \)
Typical behaviour: \sim chirality flip ($\sim\sim$ Higgs!) and masses

- **EWSM:** $\alpha \frac{m_\mu^2}{M_W^2}$

- **2HDM:** $\alpha^2 \tan^2 \beta \frac{m_\mu^2}{M_H^2}$

- **rad. $m_\mu:** $\sim \frac{m_\mu^2}{M_{NP}^2}$
Is standard SUSY already excluded?

Not in general, but CMSSM cannot accommodate a_μ anymore

- Constrained MSSM:
 - excluded by $a_\mu \perp M_H$
 - or by $a_\mu \perp$ LHC-limits
 (if Δa_μ confirmed)
 (because all scalars must be heavy)

⇒ can we also exclude other models?
Motivation:

- more than one Higgs well motivated \leadsto simplest model
- a_μ not very promising since 2-loop
a_μ in the 2-Higgs doublet model? [Cherchiglia, DS, Stöckinger-Kim ’17]

- 2-Higgs doublet model with light A_0, large couplings to τ (and top)
a_μ in the 2-Higgs doublet model? [Cherchiglia, DS, Stöckinger-Kim '17]

- 2-Higgs doublet model with light A_0, large couplings to τ (and top)

a_μ from:

τ- or top-loop need large μ, τ- and possibly top-Yukawa
\(a_\mu \) in the 2-Higgs doublet model? [Cherchiglia,DS,Stöckinger-Kim ’17]

- 2-Higgs doublet model with light \(A_0 \), large couplings to \(\tau \) (and top)

\(a_\mu \) from:

- \(\tau \)- or top-loop

Constraints:

\[Z \to \tau \tau, \ \tau \text{-decay}, \ LEP-4\tau \text{-search}; \]
\[b \to s\gamma \ \text{and} \ B_s \to \mu\mu, \ LHC \ gg \to A, \ H \to \tau\tau \]

Results: \(a_\mu \) explained in tightly constrained parameter space; testable by many observables: \(Z \to \tau\tau, \ \tau \)- and \(b \)-decays, LHC \(gg \to A, \ H \to \tau\tau \), future ILC?
a_μ in R-symmetric SUSY?

Motivation:

- MRSSM: beautiful alternative realization of SUSY: $U(1)$ R-symmetry, $N = 2$ SUSY gauge sectors, Dirac gauginos/Higgsinos, protection from FCNC [Kribs, Poppitz, Weiner]
- successful phenomenology (Higgs, dark matter, LHC bounds, EWPO, many light states possible) [Diessner, Kalinowski, Kotlarski, DS’14–’17]
Motivation:

- MRSSM: beautiful alternative realization of SUSY: $U(1)$ R-symmetry, $N = 2$ SUSY gauge sectors, Dirac gauginos/Higgsinos, protection from FCNC [Kribs, Poppitz, Weiner]
- successful phenomenology (Higgs, dark matter, LHC bounds, EWPO, many light states possible) [Diessner, Kalinowski, Kotlarski, DS’14-'17]
- However, a_μ NOT tan β-enhanced! Small unless m_{SUSY} very small
a_μ in R-symmetric SUSY?

R-symmetry forbids μ-term but allows new Yukawa couplings Λ_i for Dirac gauginos/Higgsinos

\[
\mu_R \xrightarrow{\tilde{H}_u^+} \tilde{H}_d^+ \rightleftarrows \tilde{\nu}_\mu \tilde{W}^+ \xrightarrow{\tilde{R}_d^+} \tilde{T}^+ \rightleftarrows \tilde{\nu}_\mu \tilde{W}^+ \\
\mu_L \\

\text{MSSM} \propto v_u y_\mu \propto \tan \beta \\
\text{MRSSM} \propto \Lambda_d / g_2 \]
a_μ in R-symmetric SUSY?

- a_μ NOT $\tan \beta$-enhanced! Small unless m_{SUSY} very small and $\Lambda_i \gg g_i$ (non-$N=2$ SUSY)

- In this parameter region \Rightarrow strong correlation $\mu \to e/\mu \to e\gamma$

Result: a_μ explained for $M_{\text{SUSY}} \sim 100\text{GeV}$, compressed spectra; testable by LHC/ILC, $\mu \to e/\mu \to e\gamma$
and radiative muon mass: MSSM for $\tan \beta \to \infty$

[Bach, JH Park, DS, Stöckinger-Kim, '15]

Idea: $\nu_d = 0 \leadsto m_{\mu}^{\text{tree}} = y_{\mu} \nu_d = 0$
a_μ and radiative muon mass: MSSM for $\tan \beta \rightarrow \infty$

[Bach, JH Park, DS, Stöckinger-Kim, '15]

Idea: $v_d = 0 \sim m_\mu^{\text{tree}} = y_\mu v_d = 0$

\[
\begin{align*}
 a_\mu^{\text{SUSY}} &\approx y_\mu v_u \times \text{loop} \\
 m_\mu^{\text{pole}} &\approx y_\mu v_d + y_\mu v_u \times \text{loop}
\end{align*}
\]

usual approx. \hspace{1cm} now important

\[
\frac{a_\mu^{\text{SUSY}}}{\text{loop}} \rightarrow \frac{\text{loop}}{\text{loop}}
\]
a_μ and radiative muon mass: MSSM for $\tan \beta \rightarrow \infty$

[Bach, JH Park, DS, Stöckinger-Kim, '15]

Idea: $v_d = 0 \Rightarrow m_\mu^{\text{tree}} = y_\mu v_d = 0$

$a_{\mu}^{\text{SUSY}} \approx y_\mu v_u \times \text{loop}$

$m_\mu^{\text{pole}} \approx y_\mu v_d + y_\mu v_u \times \text{loop}$

\[a_{\mu} \rightarrow \frac{\text{loop}}{\text{loop}} \]

New features for $\tan \beta \rightarrow \infty$:

- simpler behaviour, larger results

\[a_{\mu}(M_{\text{SUSY}}) \approx -70 \times 10^{-10} \left(\frac{1 \text{TeV}}{M_{\text{SUSY}}} \right)^2 \]

\[a_{\mu}(m_L \rightarrow \infty) \approx +36 \times 10^{-10} \left(\frac{1 \text{TeV}}{M_{\text{SUSY}}} \right)^2 \]
a_μ and radiative muon mass: MSSM for $\tan \beta \rightarrow \infty$

[Bach, JH Park, DS, Stöckinger-Kim, '15]

Idea: $v_d = 0 \rightsquigarrow m^\text{tree}_\mu = y_\mu v_d = 0$

\[
a^\text{SUSY}_\mu \approx y_\mu \times \text{loop}
\]

\[
m^\text{pole}_\mu \approx y_\mu v_d + y_\mu v_u \times \text{loop}
\]

Results: a_μ explained even if $M_{\text{LSP}} > 1$ TeV \rightsquigarrow largest a^SUSY_μ

tests: 1TeV chargino searches, Higgs-physics/couplings, . . .
Radiative muon/electron mass fits well to a_μ and a_e!

\begin{align*}
 a^{\text{Exp-SM}}_\mu &\approx 30 \times 10^{-10} \\
 a^{\text{Exp-SM}}_e &= -8.8(3.6) \times 10^{-13}
\end{align*}

Impossible in 2HDM, MRSSM, barely in MSSM/\(t_\beta = 50\) (\(M_{\text{SUSY}} < 150\) GeV)

Idea: either very light NP \cite{Davoudiasl,Marciano'18} or . . .

Radiative \(m_e, m_\mu, \tan \beta \to \infty\):

\begin{align*}
 M_{\text{SUSY}} &= \ldots = m_{\tilde{e}_R} = 500\text{ GeV}, \text{ and } m_{\tilde{\mu}_R} = (7\ldots 10) \times M_{\text{SUSY}} \\
 \Rightarrow a_e &= -7 \times 10^{-13} \text{ and } \Rightarrow a_\mu \approx 30 \times 10^{-10}
\end{align*}

\(\tan \beta \to \infty\): perfect fit to \(a_\mu\) and \(a_e\)!
Conclusions

- $(g - 2)_\mu$: Intriguing hint for new physics
 - many potential explanations, $M_{NP} \lesssim 2$ TeV
 - LFV, EDMs imply special flavour structure $\left| \delta_{12}, \phi_{CP} \right| \ll 1$
 - difficult to reconcile with B-anomalies

- 2HDM and a_μ: light A_0, large τ, t Yukawas
 - strongly constrained and
 - (future) LHC, B-physics, a_μ could exclude 2HDM!

- R-symmetric SUSY: a_μ different from MSSM
 - small a_μ, no $\tan \beta$ enhancement
 - test: ILC; interplay $a_\mu/\mu \rightarrow e\gamma/\mu \rightarrow e$

- Radiative m_μ, MSSM $\tan \beta \rightarrow \infty$
 - can explain a_μ for $M_{SUSY} = 1$ TeV or a_e and a_μ
 - tests: future colliders; Higgs couplings?