Two-pion contributions to the muon $g - 2$

Peter Stoffer

Physics Department, UC San Diego

in collaboration with G. Colangelo and M. Hoferichter

arXiv:1810.00007 [hep-ph], submitted to JHEP

and with G. Colangelo, M. Hoferichter, and M. Procura

and work in progress

2nd December 2018

SchwingerFest 2018
Mani L. Bhaumik Institute, UCLA
Outline

1. Hadronic contributions to the muon $g - 2$

2. Hadronic vacuum polarisation
 - Dispersion relation for the pion vector form factor
 - Fit strategy
 - Fit results and contribution to the muon $g - 2$

3. Hadronic light-by-light scattering
 - Tensor decomposition and Mandelstam representation
 - Pion pole
 - Pion box
 - $\pi \pi$-rescattering

4. Conclusions and outlook
1 Hadronic contributions to the muon $g - 2$

2 Hadronic vacuum polarisation

3 Hadronic light-by-light scattering

4 Conclusions and outlook
Hadronic vacuum polarisation (HVP)

- problem: QCD is non-perturbative at low energies
- much progress using lattice QCD first-principle calculations
- best current evaluations based on dispersion relations and data (or combinations with lattice)
Hadronic contributions to the muon $g - 2$

Hadronic vacuum polarisation (HVP)

Photon HVP function:

$$\Pi (q^2) = i (q^2 g_{\mu \nu} - q_\mu q_\nu) \Pi (q^2)$$

Unitarity of the S-matrix implies the optical theorem:

$$\text{Im} \Pi (s) = \frac{s}{e(s)^2} \sigma (e^+ e^- \rightarrow \text{hadrons})$$
Dispersion relation

Causality implies analyticity:

\[\text{Cauchy integral formula:} \]
\[
\Pi(s) = \frac{1}{2\pi i} \oint_{\gamma} \frac{\Pi(s')}{{s'} - s} ds'
\]

Deform integration path:
\[
\Pi(s) - \Pi(0) = \frac{s}{\pi} \int_{4M^2}^{\infty} \frac{\text{Im}\Pi(s')}{(s' - s - i\epsilon)s'} ds'
\]
HVP contribution to \((g - 2)_\mu\)

\[
a^\text{HVP}_\mu = \frac{m^2_\mu}{12\pi^3} \int_{s_{\text{thr}}}^\infty ds \frac{\hat{K}(s)}{s} \sigma(e^+e^- \to \text{hadrons})
\]

- basic principles: unitarity and analyticity
- direct relation to experiment: total hadronic cross section \(\sigma(e^+e^- \to \text{hadrons})\)
- can be systematically improved: dedicated \(e^+e^-\) program (BaBar, Belle, BESIII, CMD3, KLOE2, SND)
Hadronic light-by-light (HLbL) scattering

- so far only model calculations
- uncertainty estimate based rather on consensus than on a systematic method
- with recent progress on vacuum polarisation, HLbL starts to dominate the theory uncertainty
- progress with lattice QCD and dispersive approach
Hadronic contributions to the muon $g - 2$

SM contributions to $(g - 2)_\mu$

<table>
<thead>
<tr>
<th></th>
<th>$10^{11} \times a_\mu$</th>
<th>$10^{11} \times \Delta a_\mu$</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNL E821</td>
<td>116 592 089</td>
<td>63</td>
<td>→ PDG 2016</td>
</tr>
<tr>
<td>QED total</td>
<td>116 584 718.97</td>
<td>0.07</td>
<td>→ Aoyama et al. 2012, 2017</td>
</tr>
<tr>
<td>EW</td>
<td>153.6</td>
<td>1.0</td>
<td>→ Gnendiger et al. 2013</td>
</tr>
<tr>
<td>LO HVP</td>
<td>6 932.7</td>
<td>24.6</td>
<td>→ Keshavarzi et al. 2018</td>
</tr>
<tr>
<td>NLO HVP</td>
<td>−98.2</td>
<td>0.4</td>
<td>→ Keshavarzi et al. 2018</td>
</tr>
<tr>
<td>NNLO HVP</td>
<td>12.4</td>
<td>0.1</td>
<td>→ Kurz et al. 2014</td>
</tr>
<tr>
<td>LO HLbL</td>
<td>102</td>
<td>39</td>
<td>→ Nyffeler 2017</td>
</tr>
<tr>
<td>NLO HLbL</td>
<td>3</td>
<td>2</td>
<td>→ Colangelo et al. 2014</td>
</tr>
<tr>
<td>Hadronic total</td>
<td>6952</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Theory total</td>
<td>116 591 825</td>
<td>46</td>
<td></td>
</tr>
</tbody>
</table>
Hadronic contributions to the muon $g - 2$

SM contributions to $(g - 2)_\mu$

<table>
<thead>
<tr>
<th></th>
<th>$10^{11} \times a_\mu$</th>
<th>$10^{11} \times \Delta a_\mu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNL E821</td>
<td>116 592 089</td>
<td>63</td>
</tr>
<tr>
<td>QED total</td>
<td>116 584 718.97</td>
<td>0.07</td>
</tr>
<tr>
<td>EW</td>
<td>153.6</td>
<td>1.0</td>
</tr>
<tr>
<td>LO HVP</td>
<td>6 931</td>
<td>34</td>
</tr>
<tr>
<td>NLO HVP</td>
<td>-98.2</td>
<td>0.4</td>
</tr>
<tr>
<td>NNLO HVP</td>
<td>12.4</td>
<td>0.1</td>
</tr>
<tr>
<td>LO HLbL</td>
<td>102</td>
<td>39</td>
</tr>
<tr>
<td>NLO HLbL</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Hadronic total</td>
<td>6950</td>
<td>52</td>
</tr>
<tr>
<td>Theory total</td>
<td>116 591 823</td>
<td>52</td>
</tr>
</tbody>
</table>

→ PDG 2016

→ Aoyama et al. 2012, 2017

→ Gnendiger et al. 2013

→ Davier et al. 2017

→ Keshavarzï et al. 2018

→ Kurz et al. 2014

→ Nyffeler 2017

→ Colangelo et al. 2014
Overview

1. Hadronic contributions to the muon $g - 2$

2. Hadronic vacuum polarisation
 Dispersion relation for the pion vector form factor
 Fit strategy
 Fit results and contribution to the muon $g - 2$

3. Hadronic light-by-light scattering

4. Conclusions and outlook
Two-pion contribution to HVP

- $\pi\pi$ contribution amounts to more than 70% of HVP contribution
- responsible for a similar fraction of HVP uncertainty
- unitarity relation for $\pi\pi$ contribution to HVP: pion vector form factor (VFF)

$$\sigma(e^+e^- \rightarrow \pi^+\pi^-) \propto |F^V_\pi(s)|^2$$
Two-pion contribution to HVP

- VFF itself fulfils again a unitarity relation:

\[
\begin{align*}
\text{VFF} \quad = \quad & \quad \text{VFF term} \\
& \quad \text{VFF term} \\
& \quad \text{VFF term} \\
& \quad \text{...}
\end{align*}
\]

- use the constraints of analyticity and unitarity to better understand uncertainties in HVP $\pi\pi$ channel

Ananthanarayan et al. 2013, 2016
Dispersive representation of pion VFF

\[F^V_\pi(s) = \Omega_1^1(s) \times G_\omega(s) \times G^N_{\text{in}}(s) \]

- Omnès function with elastic $\pi\pi$-scattering P-wave phase shift $\delta_1^1(s)$ as input:

\[\Omega_1^1(s) = \exp \left\{ \frac{s}{\pi} \int_{4M^2_\pi}^\infty ds' \frac{\delta_1^1(s')}{s'(s' - s)} \right\} \]
Dispersive representation of pion VFF

\[F_V^\pi(s) = \Omega_1^1(s) \times G_\omega(s) \times G_{in}^N(s) \]

- isospin-breaking 3π intermediate state: negligible
 apart from ω resonance ($\rho - \omega$ interference effect)

\[G_\omega(s) = 1 + \frac{s}{\pi} \int_{9M^2_\pi}\! ds' \frac{\text{Im}g_\omega(s')}{s'(s' - s)} \left(\frac{1 - \frac{9M^2_\pi}{s'}}{1 - \frac{9M^2_\pi}{M^2_\omega}} \right)^4, \]

\[g_\omega(s) = 1 + \epsilon_\omega \frac{s}{(M_\omega - \frac{i}{2}\Gamma_\omega)^2 - s} \]
Dispersive representation of pion VFF

\[F_V^\pi(s) = \Omega_1^1(s) \times G_\omega(s) \times G_{\text{in}}^N(s) \]

- heavier intermediate states: \(4\pi\) (mainly \(\pi^0\omega\), \(\bar{K}K\), \ldots)
- described in terms of a conformal polynomial with cut starting at \(\pi^0\omega\) threshold

\[G_{\text{in}}^N(s) = 1 + \sum_{k=1}^{N} c_k (z^k(s) - z^k(0)) \]

- correct \(P\)-wave threshold behaviour imposed
Input and systematic uncertainties

- elastic $\pi\pi$-scattering P-wave phase shift $\delta_1^1(s)$ from Roy-equation analysis, including uncertainties
 \rightarrow Ananthanarayan et al., 2001; Caprini et al., 2012

- high-energy continuation of phase shift above validity of Roy equations

- ω width

- systematics in conformal polynomial: order N, one mapping parameter
Free fit parameters

- value of the elastic $\pi\pi$-scattering P-wave phase shift δ^1_1 at two points (0.8 GeV and 1.15 GeV)
- $\rho - \omega$ mixing parameter ϵ_ω
- ω mass
- energy rescaling for the experimental input, which allows for a calibration uncertainty
- $N - 1$ coefficients in the conformal polynomial
VFF fit to the following data

- time-like cross section data from high-statistics e^+e^- experiments SND, CMD-2, BaBar, KLOE
- space-like VFF data from NA7
- Eidelman – Łukaszuk bound on inelastic phase:
 \[\rightarrow \text{Eidelman, Łukaszuk, 2004} \]
- iterative fit routine including full experimental covariance matrices and avoiding D’Agostini bias
 \[\rightarrow \text{D’Agostini, 1994; Ball et al. (NNPDF) 2010} \]
VFF fit results

- perfect fits to all experiments possible (p-value around 3% to 6%) with a few caveats:
 - either M_ω or energy recalibration has to be fit (practically identical results)
 - two outliers in KLOE08 set (>30 units in χ^2)
 - BESIII covariance matrix cannot be used
- well-known discrepancy between BaBar and KLOE ⇒ fit all data sets and inflate errors by $\sqrt{\chi^2/dof}$
- inelastic effects dominate uncertainty for $(g - 2)_\mu$
Fit results and contribution to $(g - 2)_\mu$

Fit result for the VFF $|F_V^\pi(s)|^2$
Fit results and contribution to $(g - 2)_\mu$
VFF fit result and data without energy rescaling

Fit results and contribution to \((g - 2)_{\mu}\)
Fit results and contribution to $(g - 2)_{\mu}$

Fit result for the VFF $|F^V_{\pi}(s)|^2$
Fit results and contribution to $(g - 2)_\mu$

Relative difference between data sets and fit result

<table>
<thead>
<tr>
<th>Data Set</th>
<th>BaBar</th>
<th>KLOE08</th>
<th>KLOE10</th>
<th>KLOE12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Error</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fit Error</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMD-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$|\frac{F(s)}{F_{\pi}(s)}|^2_{\text{fit}} - 1$
Contribution to \((g - 2)_\mu\)

- low-energy \(\pi\pi\) contribution:

\[
a_{\mu}^{\text{HVP},\pi\pi} \left|_{\leq 0.63\text{ GeV}} \right. = 132.8(0.4)(1.1) \times 10^{-10}
\]

⇒ compare to 131.1(1.0) → KNT18, 133.3(7) → Ananthanarayan et al., 2016

- \(\pi\pi\) contribution up to 1 GeV:

\[
a_{\mu}^{\text{HVP},\pi\pi} \left|_{\leq 1\text{ GeV}} \right. = 494.8(1.5)(2.1) \times 10^{-10}
\]
Result for $a_{\mu}^{\text{HVP, } \pi\pi}$ below 1 GeV

- SND
- CMD-2
- BaBar
- KLOE''
- Energy scan
- All e^+e^-
- All e^+e^-, NA7

$10^{10} \times a_{\mu}^{\pi\pi} \leq 1$ GeV
Improved determination of $\delta_1^1(s)$

Fit result for the $\pi\pi$ P-wave phase shift δ_1^1

$$
\begin{align*}
\delta_1^1(s_0) &= 110.4(1)(7)^\circ = 110.4(7)^\circ \\
\delta_1^1(s_1) &= 165.7(0.1)(2.4)^\circ = 165.7(2.4)^\circ
\end{align*}
$$
Determination of the pion charge radius

Definition of charge radius:

\[F_V^\pi(s) = 1 + \frac{1}{6} \langle r^2_\pi \rangle s + \mathcal{O}(s^2) \]

dispersion relation for \(F_V^\pi \) implies sum rule:

\[\langle r^2_\pi \rangle = \frac{6}{\pi} \int_{4M^2_\pi}^{\infty} ds \frac{\text{Im} F_V^\pi(s)}{s^2} \]

our result:

\[\langle r^2_\pi \rangle = 0.429(1)(4) \text{ fm}^2 = 0.429(4) \text{ fm}^2 \]

compare to PDG: \(\langle r^2_\pi \rangle = 0.452(11) \text{ fm}^2 \)

(includes potentially model-dependent \(eN \rightarrow e\pi N \))
A puzzle: ω mass

fit result for ω mass:

combined fit: $M_\omega = 781.69(9)(3)$ MeV

fits to single experiments: $M_\omega = 781.49 \ldots 782.05$ MeV

compare to PDG value (dominated by 3π channel):

$M^{\text{PDG}}_\omega = 782.65(12)$ MeV
Overview

1. Hadronic contributions to the muon $g - 2$

2. Hadronic vacuum polarisation

3. Hadronic light-by-light scattering
 - Tensor decomposition and Mandelstam representation
 - Pion pole
 - Pion box
 - $\pi\pi$-rescattering

4. Conclusions and outlook
Dispersive approach

- make use of fundamental principles:
 - gauge invariance, crossing symmetry
 - unitarity, analyticity
- relate HLbL to experimentally accessible quantities
BTT Lorentz decomposition

Lorentz decomposition of the HLbL tensor:

$$\Pi^{\mu\nu\lambda\sigma}(q_1, q_2, q_3) = \sum_i T_i^{\mu\nu\lambda\sigma} \Pi_i(s, t, u; q_j^2)$$

- Lorentz structures manifestly gauge invariant
- scalar functions Π_i free of kinematic singularities
 ⇒ dispersion relation in the Mandelstam variables
Dispersive representation

- write down a double-spectral (Mandelstam) representation for the HLbL tensor
- split the HLbL tensor according to the sum over intermediate (on-shell) states in unitarity relations

\[
\Pi_{\mu\nu\lambda\sigma} = \Pi_{\mu\nu\lambda\sigma}^{\pi^0\text{-pole}} + \Pi_{\mu\nu\lambda\sigma}^{\text{box}} + \Pi_{\mu\nu\lambda\sigma}^{\pi\pi} + \ldots
\]
Dispersive representation

- write down a double-spectral (Mandelstam) representation for the HLbL tensor
- split the HLbL tensor according to the sum over intermediate (on-shell) states in unitarity relations

\[\Pi_{\mu\nu\lambda\sigma} = \Pi_{\mu\nu\lambda\sigma}^{\pi^0\text{-pole}} + \Pi_{\mu\nu\lambda\sigma}^{\text{box}} + \Pi_{\mu\nu\lambda\sigma}^{\pi\pi} + \ldots \]

one-pion intermediate state
Dispersive representation

- write down a double-spectral (Mandelstam) representation for the HLbL tensor
- split the HLbL tensor according to the sum over intermediate (on-shell) states in unitarity relations

\[\Pi_{\mu\nu\lambda\sigma} = \Pi_{\mu\nu\lambda\sigma}^{\pi^0\text{-pole}} + \Pi_{\mu\nu\lambda\sigma}^{\text{box}} + \Pi_{\mu\nu\lambda\sigma}^{\pi\pi} + \ldots \]

two-pion intermediate state in both channels
Dispersive representation

- write down a double-spectral (Mandelstam) representation for the HLbL tensor
- split the HLbL tensor according to the sum over intermediate (on-shell) states in unitarity relations

\[\Pi_{\mu\nu\lambda\sigma} = \Pi_{\mu\nu\lambda\sigma}^{\pi^0\text{-pole}} + \Pi_{\mu\nu\lambda\sigma}^{\text{box}} + \Pi_{\mu\nu\lambda\sigma}^{\pi\pi} + \ldots \]

two-pion intermediate state in first channel
Dispersive representation

- write down a double-spectral (Mandelstam) representation for the HLbL tensor
- split the HLbL tensor according to the sum over intermediate (on-shell) states in unitarity relations

\[\Pi_{\mu \nu \lambda \sigma} = \Pi^{\pi^0\text{-pole}}_{\mu \nu \lambda \sigma} + \Pi^{\text{box}}_{\mu \nu \lambda \sigma} + \Pi^{\pi \pi}_{\mu \nu \lambda \sigma} + \ldots \]

higher intermediate states
Pion pole

\[\Pi_{\pi^0} = \frac{\mathcal{F}_{\pi^0\gamma^*\gamma^*}(q_1^2, q_2^2)\mathcal{F}_{\pi^0\gamma^*\gamma}(q_3^2, 0)}{q_3^2 - M_{\pi^0}^2} \]

\[\Pi_{\pi^0} \text{ via crossing symmetry} \]

- input: doubly-virtual and singly-virtual pion transition form factors \(\mathcal{F}_{\gamma^*\gamma^*\pi^0} \) and \(\mathcal{F}_{\gamma^*\gamma\pi^0} \)

- dispersive analysis of transition form factor:

\[a_{\mu}^{\pi^0} = 62.6^{+3.0}_{-2.5} \times 10^{-11} \]

Box contribution

- simultaneous two-pion cuts in two channels
- Mandelstam representation explicitly constructed
- q^2-dependence: pion VFF $F_V^\pi(q_i^2)$ for each off-shell photon factor out
- Wick rotation: integrate over space-like momenta
- dominated by low energies ≤ 1 GeV
- result: $a_{\mu}^{\pi\text{-box}} = -15.9(2) \times 10^{-11}$
Fit result for the VFF $|F^V_\pi(s)|^2$

- **total error**
- **fit error**
- **NA7**
- **JLab**

$(the\ JLab\ data\ are\ not\ used\ in\ the\ fit)$
Rescattering contribution

- neglect left-hand cut due to multi-particle intermediate states in crossed channel
- two-pion cut in only one channel:

\[
\Pi_{i\pi\pi} = \frac{1}{2} \left(\frac{1}{\pi} \int_{4M_{\pi}^2}^{\infty} dt' \frac{\text{Im}\Pi_{i\pi\pi}(s, t', u')}{t' - t} + \frac{1}{\pi} \int_{4M_{\pi}^2}^{\infty} du' \frac{\text{Im}\Pi_{i\pi\pi}(s, t', u')}{u' - u} \right) + \text{fixed-}t + \text{fixed-}u
\]
Rescattering contribution

- expansion into partial waves
- unitarity gives imaginary parts in terms of helicity amplitudes for $\gamma^* \gamma^{(*)} \rightarrow \pi \pi$:

$$\text{Im}_{\pi \pi} h_{J,\lambda_1 \lambda_2, \lambda_3 \lambda_4}^J (s) \propto \sigma_{\pi}(s) h_{J,\lambda_1 \lambda_2} (s) h_{J,\lambda_3 \lambda_4}^* (s)$$

- framework valid for arbitrary partial waves
- resummation of PW expansion reproduces full result: checked for pion box
S-wave rescattering contribution

- pion-pole approximation to left-hand cut
 \[q^2 \] -dependence given by \(F^V_\pi \)

- phase shifts based on modified inverse-amplitude method (\(f_0(500) \) parameters accurately reproduced)

- result for S-waves:

\[
\alpha_{\mu,J=0}^{\pi\pi,\pi\text{-pole LHC}} = -8(1) \times 10^{-11}
\]
Overview

1 Hadronic contributions to the muon $g - 2$

2 Hadronic vacuum polarisation

3 Hadronic light-by-light scattering

4 Conclusions and outlook
Conclusions and outlook

HVP

• precise dispersive determination of pion VFF
• comprehensive analysis of uncertainties in $\pi\pi$ channel
• valuable to corroborate uncertainties of direct integration methods
• precise prediction for low-energy region, but useful up to 1 GeV:

$$a_{\mu}^{HVP,\pi\pi}|_{\leq 1 \text{ GeV}} = 494.8(1.5)(2.1) \times 10^{-10}$$

• side-products: improved determination of $\pi\pi$ P-wave phase shift; pion charge radius
Conclusions and outlook

HLbL

- very precise evaluation of HLbL pion-box contribution:
 \[a_{\mu}^{\pi-box} = -15.9(2) \times 10^{-11} \]

- precise prediction for S-wave $\pi\pi$-rescattering contribution with pion-pole left-hand cut:
 \[a_{\mu,J=0}^{\pi\pi,\pi\text{-pole LHC}} = -8(1) \times 10^{-11} \]

- D-wave contribution work in progress: requires inclusion of higher left-hand cuts

- contributions beyond $\pi\pi$ and pQCD/OPE constraints work in progress
Summary

• our dispersive approach to HVP and HLbL is based on fundamental principles:
 • gauge invariance, crossing symmetry (for HLbL)
 • unitarity, analyticity
• we are focusing on the lightest intermediate states
• relation to experimentally accessible (or again with data dispersively reconstructed) quantities
• precise numerical evaluation of two-pion contributions
• a step towards a model-independent calculation of a_μ