From scattering amplitudes to classical gravity

N. Emil J. Bjerrum-Bohr
Niels Bohr International Academy, Niels Bohr Institute

“QCD meets gravity 2019” [Mani Bhaumik Institute]

Work together with
A. Cristofoli, P. Damgaard, J. Donoghue, G. Festuccia, H. Gomez, B. Holstein, L. Plante, P. Vanhove
Known for a long time that a particle version of General Relativity can be derived from the Einstein Hilbert Lagrangian.

Expand Einstein-Hilbert Lagrangian:

\[\mathcal{L}_{EH} = \int d^4x \left[\sqrt{-g} R \right] \quad g_{\mu\nu} \equiv \eta_{\mu\nu} + \kappa h_{\mu\nu} \]

Derive vertices as in a particle theory - computations using Feynman diagrams!

From scattering amplitudes to classical gravity
Off-shell computation of amplitudes

- Expand Lagrangian, laborious and tedious process....
- Vertices: 3pt, 4pt, 5pt,...n-pt
- Complicated off-shell expressions

\[V_{\mu\alpha,\nu\beta,\sigma\gamma}^{(3)}(k_1, k_2, k_3) = \kappa \text{sym} \left[-\frac{1}{2} P_3(k_1 \cdot k_2 \eta_{\mu\alpha} \eta_{\nu\beta} \eta_{\sigma\gamma}) - \frac{1}{2} P_6(k_{1\nu}k_{1\beta}\eta_{\mu\alpha}\eta_{\sigma\gamma}) \right. \]

\[+ \frac{1}{2} P_3(k_1 \cdot k_2 \eta_{\mu\nu} \eta_{\alpha\beta} \eta_{\sigma\gamma}) + P_6(k_1 \cdot k_2 \eta_{\mu\alpha} \eta_{\nu\sigma} \eta_{\beta\gamma}) + 2P_3(k_{1\nu}k_{1\gamma}\eta_{\mu\alpha}\eta_{\beta\sigma}) \]

\[- P_3(k_{1\beta}k_{2\mu}\eta_{\alpha\nu}\eta_{\sigma\gamma}) + P_3(k_{1\sigma}k_{2\gamma}\eta_{\mu\nu}\eta_{\alpha\beta}) + P_6(k_{1\sigma}k_{1\gamma}\eta_{\mu\nu}\eta_{\alpha\beta}) \]

\[+ \text{sym} \left[+ 2P_6(k_{1\nu}k_{2\gamma}\eta_{\beta\mu}\eta_{\alpha\sigma}) + 2P_3(k_{1\nu}k_{2\mu}\eta_{\beta\sigma}\eta_{\gamma\alpha}) - 2P_3(k_1 \cdot k_2 \eta_{\alpha\nu}\eta_{\beta\sigma}\eta_{\gamma\mu}) \right], \]

(DeWitt; Sannan)

Much more complicated than Yang-Mills theory but still many useful applications.

From scattering amplitudes to classical gravity
Gravity as a quantum field theory

- **Viewpoint:** Gravity as a non-abelian gauge field theory with self-interactions

- **Non-renormalisalbe theory!** (‘t Hooft and Veltman)

 Dimensionful coupling:
 \[G_N = \frac{1}{M_{\text{planck}}^2} \]

- **Traditional belief:** – no known symmetry can remove all UV-divergences

 String theory can by introducing new length scales

From scattering amplitudes to classical gravity
Quantum gravity as an effective field theory

(Weinberg) proposed to view the quantization of general relativity as that of an effective field theory.

\[\mathcal{L} = \sqrt{-g} \left[\frac{2R}{\kappa^2} + \mathcal{L}_{\text{matter}} \right] \]

\[\mathcal{L} = \sqrt{-g} \left\{ \frac{2R}{\kappa^2} + c_1 R^2 + c_2 R^{\mu\nu} R_{\mu\nu} + \ldots \right\} \]
Practical quantum gravity at low energies

- Consistent quantum theory:
 - Quantum gravity at low energies (Donoghue)
 - Direct connection to low energy dynamics of string and super-gravity theories
 - Suggest general relativity augmented by higher derivative operators – the most general modified theory

- A somewhat curious application:
 Classical physics from quantum theory!

NB: Contact with General Relativity require some care..!
(Many talks..)
One-loop (off-shell) gravity amplitude computation

Box diagrams:

Triangles:

Bubbles:

From scattering amplitudes to classical gravity

(NEJB, Donoghue, Holstein (2001))
One-loop (off-shell) gravity amplitude computation

From scattering amplitudes to classical gravity

(NEJB, Donoghue, Holstein (2001))
One-loop (off-shell) gravity amplitude computation

From scattering amplitudes to classical gravity

(NEJB, Donoghue, Holstein (2001))
One-loop result for gravity

- Four point amplitude can be deduced to take the form

\[\mathcal{M} \sim \left(A + Bq^2 + \ldots + \alpha \kappa^4 \frac{1}{q^2} + \beta_1 \kappa^4 \ln(-q^2) + \beta_2 \kappa^4 \frac{m}{\sqrt{-q^2}} + \ldots \right) \]

Focus on deriving these \(\sim \)>

Long-range behavior

(no higher derivative contributions)

Short range behavior

From scattering amplitudes to classical gravity
One-loop and the cut

- It is in fact much **simpler** to capture the long-range behavior from unitarity

\[C_{i,...,j} = \text{Im} K_{i,...,j} > 0 \text{ M}^{1\text{-loop}} \]

(KLT + on-shell 4D input trees recycled from Yang-Mills
(Badger et al; Forde Kosower)
(e.g. D-dimensions (NEJB, Gomez, Cristofoli, Damgaard))
QCD meets gravity

KLT relationship (Kawai, Lewellen and Tye)

\[A^M_{\text{closed}} \sim \sum_{\Pi, \Pi} e^{i\pi \Phi(\Pi, \Pi)} A^\text{left open}_M(\Pi) A^\text{right open}_M(\Pi) \]

\[
\left[(\sim \zeta)^{\mu \mu' \nu \nu' \beta \beta'} \right] = \left[(\sim \zeta)^{L \mu \nu \beta} \right] \otimes \left[(\sim \zeta)^{R \mu' \nu' \beta'} \right]
\]

All multiplicity S-kernel

(NEJB, Damgaard, Feng, Søndergaard, Vanhove)

(Bern, Dixon, Dunbar, Perelstein, Rozowsky)

(many talks)

From scattering amplitudes to classical gravity
Massive scalar-scalar scattering

- Will consider scalar-scalar scattering amplitudes mediated through graviton field theory interaction

\[S = \int d^4 x \sqrt{-g} \left[\frac{R}{16\pi G_N} + \frac{1}{2} \sum_a \left(g^{\mu\nu} \partial_\mu \phi_a \partial_\nu \phi_a - m_a^2 \phi_a^2 \right) \right] \]

\[\mathcal{M} = \sum_{L=0}^{+\infty} \mathcal{M}^{L\text{-loop}} \]

\[\mathcal{M}^{L\text{-loop}} \sim O(G_N^{L+1}) \]

\[p_1^\mu = (E_a, \vec{p}), \quad p_2^\mu = (E_a, \vec{p}'), \]
\[p_3^\mu = (E_b, -\vec{p}), \quad p_4^\mu = (E_b, -\vec{p}') \]

\[|\vec{p}| = |\vec{p}'| \quad q^\mu = p_1^\mu - p_2^\mu \]

From scattering amplitudes to classical gravity
Tree level

\[\mathcal{M}_{\text{tree}} = - \frac{4 \pi G_N}{E_a E_b} \frac{[2(p_1 \cdot p_3)^2 - m_a^2 m_b^2 - |\vec{q}|^2 (p_1 \cdot p_3)]}{|\vec{q}|^2} \]

\[p_1 \cdot p_3 = E_a(p) E_b(p) + |\vec{p}|^2 \]

Newton’s law through Fourier transform

\[V(r) = -\frac{G m_1 m_2}{r} \]
Result for the one-loop amplitude

1) Expand out traces
2) Reduce to scalar basis of integrals
3) Isolate coefficients
 (Bern, Dixon, Dunbar, Kosower, NEJB, Donoghue, Vanhove)
 (See also Cachazo and Guevara)

\[M^{1\text{-loop}} = \frac{i16\pi^2 G_N^2}{E_a E_b} \left(c_- I_- + c_\times I_\times + c_\uparrow I_\uparrow + c_\downarrow I_\downarrow + \cdots \right) \]

From scattering amplitudes to classical gravity
\[\mathcal{M}^{1\text{-loop}} = \frac{i16\pi^2 G_N^2}{E_a E_b} \left(c_{\Box} \mathcal{I}_{\Box} + c_{\ast} \mathcal{I}_{\ast} + c_{\rightarrow} \mathcal{I}_{\rightarrow} + c_{\leftarrow} \mathcal{I}_{\leftarrow} + \cdots \right) \]

\[\mathcal{I}_{\Box} = \int \frac{d^{d+1} \ell}{(2\pi)^{d+1}} \frac{1}{((\ell + p_1)^2 - m_a^2 + i\varepsilon)((\ell - p_3)^2 - m_b^2 + i\varepsilon)(\ell^2 + i\varepsilon)((\ell + q)^2 + i\varepsilon)} \]

\[\mathcal{I}_{\ast} = \int \frac{d^{d+1} \ell}{(2\pi)^{d+1}} \frac{1}{((\ell + p_1)^2 - m_a^2 + i\varepsilon)((\ell + p_4)^2 - m_b^2 + i\varepsilon)(\ell^2 + i\varepsilon)((\ell + q)^2 + i\varepsilon)} \]

\[\mathcal{I}_{\rightarrow} = \int \frac{d^{d+1} \ell}{(2\pi)^{d+1}} \frac{1}{((\ell + q)^2 + i\varepsilon)(\ell^2 + i\varepsilon)((\ell + p_1)^2 - m_a^2 + i\varepsilon)} \]

\[\mathcal{I}_{\leftarrow} = \int \frac{d^{d+1} \ell}{(2\pi)^{d+1}} \frac{1}{((\ell - q)^2 + i\varepsilon)(\ell^2 + i\varepsilon)((\ell - p_3)^2 - m_b^2 + i\varepsilon)} \]
Classical pieces in loops

\[\int \frac{d^4 \ell}{(2\pi)^4} \frac{1}{\ell^2 + i\epsilon} \frac{1}{(\ell + q)^2 + i\epsilon} \frac{1}{(\ell + p_1)^2 - m_1^2 + i\epsilon} \]

\[(\ell + p_1)^2 - m_1^2 = \ell^2 + 2\ell \cdot p_1 \approx 2m_1 \ell_0 \]

From scattering amplitudes to classical gravity
Classical pieces in loops

\[
\frac{1}{2m_1} \int \frac{d^4 \ell}{(2\pi)^4} \frac{1}{\ell^2 + i\epsilon} \frac{1}{(\ell + q)^2 + i\epsilon} \frac{1}{\ell_0 + i\epsilon}
\]

Close contour

\[
\int_{|\vec{\ell}| \ll m} \frac{d^3 \vec{\ell}}{(2\pi)^3} \frac{i}{4m} \frac{1}{\ell^2} \frac{1}{(\ell + q)^2} = \frac{i}{32m|\vec{q}|}
\]

From scattering amplitudes to classical gravity
One-loop level

Branch (explained by Weinberg) Ignore quantum pieces

\[M^{1-\text{loop}} = \frac{i16\pi^2G_N^2}{E_a E_b} \left(c_\Box \mathcal{I}_\Box + c_\otimes \mathcal{I}_\otimes + c_\Rightarrow \mathcal{I}_\Rightarrow + c_\Leftarrow \mathcal{I}_\Leftarrow + \cdots \right) \]

\[
\mathcal{I}_\Box = -\frac{i}{16\pi^2|\vec{q}|^2} \left(\frac{1}{m_a m_b} + \frac{m_a(m_a - m_b)}{3m_a^2 m_b^2} \right) + \frac{i\pi}{|p|E_p} \left(\frac{2}{3-d} - \log |\vec{q}|^2 \right) + \cdots
\]

\[
\mathcal{I}_\otimes = -\frac{i}{16\pi^2|\vec{q}|^2} \left(\frac{1}{m_a m_b} - \frac{m_a(m_a - m_b)}{3m_a^2 m_b^2} \right) \left(\frac{2}{3-d} - \log |\vec{q}|^2 \right) + \cdots
\]

\[
\mathcal{I}_\Rightarrow = -\frac{i}{32m_a |\vec{q}|} + \cdots
\]

\[
\mathcal{I}_\Leftarrow = -\frac{i}{32m_b |\vec{q}|} + \cdots
\]

\[c_\Box = c_\otimes = 4\left(m_a^2 m_b^2 - 2(p_1 \cdot p_3)^2 \right)^2 \]

\[c_\Rightarrow = 3m_a^2 \left(m_a^2 m_b^2 - 5(p_1 \cdot p_3)^2 \right) \]

\[c_\Leftarrow = 3m_b^2 \left(m_a^2 m_b^2 - 5(p_1 \cdot p_3)^2 \right) \]
Computational setup

- We use the language of old-fashioned time-ordered perturbation theory
- In particular we eliminate by hand
 - Annihilation channels
 - Back-tracking diagrams
 - Anti-particle intermediate states

We will also assume (classical) long-distance scattering distances

(Cristofoli, Bjerrum-Bohr, Damgaard, Vanhove)
Relation to a potential

- One-loop amplitude after summing all contributions

\[\mathcal{M}^{1-\text{loop}} = \frac{\pi^2 G_N^2}{E_p^2} \left[\frac{1}{2|q'|} \left(\frac{c_\triangleright}{m_a} + \frac{c_\triangleleft}{m_b} \right) + \frac{i c_\Box}{E_p |\vec{p}|} \left(\frac{2}{3-d} - \log |q'|^2 \right) \right]. \]

Super-classical/singular

- How to relate to a classical potential?
 - Choice of coordinates
 - Born subtraction

From scattering amplitudes to classical gravity
Einstein-Infeld-Hoffman Potential

- Solve for potential in non-relativistic limit,

\[i\langle f|T|i \rangle = -2\pi i \delta(E - E') \times \left[\langle f|\tilde{V}_{bs}(q)|i \rangle + \sum_n \frac{\langle f|\tilde{V}_{bs}(q)|n \rangle \langle n|\tilde{V}_{bs}(q)|i \rangle}{E - E_n + i\epsilon} + \ldots \right] \]

\[\langle f|\tilde{V}_{bs}(q)|i \rangle = -\frac{Gm_1m_2}{r} \left[1 + 3\frac{G(m_1 + m_2)}{r} \right] \]

- Contact with Einstein-Infeld-Hoffmann Hamiltonian

\[\tilde{V}_{bs}(r) = V(r) + \frac{7Gm_1m_2(m_1 + m_2)}{2c^2r^2} \]
Post-Newtonian interaction potentials

\[H = \frac{p_1^2}{2m_1} + \frac{p_4^2}{2m_2} - \frac{p_1^4}{8m_1^3} - \frac{p_4^4}{8m_2^3} - \frac{Gm_1m_2}{r} \left(\frac{3p_1^2}{m_1^2} + \frac{3p_4^2}{m_2^2} - \frac{7p_1 \cdot p_4}{m_1m_2} - \frac{(p_1 \cdot \vec{r})(p_4 \cdot \vec{r})}{m_1m_2r^2} \right) \frac{G^2m_1m_2(m_1 + m_2)}{2r^2} \]

(Einstein-Infeld-Hoffman, Iwasaki)

Crucial subtraction of Born term to in order to get the correct PN potential

\((3 - 7/2 \rightarrow -1/2)\)

From scattering amplitudes to classical gravity
Relation to a relativistic PM potential

- Amplitude defined via perturbative expansion around a flat Minkowskian metric

- Now we need to relate the Scattering Amplitude to the potential for a bound state problem – alternative to matching (Cheung, Solon, Rothstein; Bern, Cheung, Roiban, Shen, Solon, Zeng)

- Starting point: the Hamiltonian of the relativistic Salpeter equation

\[
\hat{H} = \hat{H}_0 + \hat{V}, \quad \hat{H}_0 = \sqrt{\hat{k}^2 + m_a^2} + \sqrt{\hat{k}^2 + m_b^2}
\]
Relation to a potential

- Analysis involves solution of the Lippmann-Schwinger recursive equation:

\[
\mathcal{M}(p, p') = \langle p|V|p'\rangle + \int \frac{d^3 k}{(2\pi)^3} \frac{\langle p|V|k\rangle \mathcal{M}(k, p')}{E_p - E_k + i\varepsilon}
\]

\[
\langle p|V|p'\rangle = \mathcal{M}(p, p') - \int \frac{d^3 k}{(2\pi)^3} \frac{\mathcal{M}(p, k)\mathcal{M}(k, p')}{E_p - E_k + i\varepsilon} + \ldots
\]

\[
V(p, r) = \int \frac{d^3 q}{(2\pi)^3} e^{iq\cdot r} V(p, q)
\]
Tree level

\[M_{\text{tree}} = \frac{4\pi G_N}{E_a E_b} \frac{[2(p_1 \cdot p_3)^2 - m_a^2 m_b^2 - |q|^2(p_1 \cdot p_3)]}{|q|^2} \]

\[p_1 \cdot p_3 = E_a(p) E_b(p) + |\vec{p}|^2 \]

Same result as from matching (Cheung, Solon, Rothstein; Bern, Cheung, Roiban, Shen, Solon, Zeng)

\[V_{1PM}(p, r) = \frac{1}{E_p^2 \xi} \frac{G_N c_1(p^2)}{r} + \cdots \]

\[c_1(p^2) \equiv m_a^2 m_b^2 - 2(p_1 \cdot p_3)^2 \]

From scattering amplitudes to classical gravity
One-loop

\[M^{\text{Iterated}} = -\frac{16\pi^2 G_N^2}{E_a(p^2) E_b(p^2)} \int \frac{d^d k}{(2\pi)^d} \frac{A(\vec{p}, \vec{k})}{|\vec{p} - \vec{k}|^2} \frac{A(\vec{k}, \vec{p}')}{|\vec{p}' - \vec{k}|^2} \frac{G(p^2, k^2)}{E_a(k^2) E_b(k^2)} \]

\[G(p^2, k^2) = \frac{1}{E_p - E_k + i\epsilon} \]

\[M^{\text{Iterated}} = \frac{32\pi^2 G_N^2}{E_p^3 \xi} c_1^2 \int \frac{d^d k}{(2\pi)^d} \frac{1}{|\vec{p} - \vec{k}|^2 |\vec{p}' - \vec{k}|^2 (k^2 - p^2)} \]

\[-\frac{16\pi^2 G_N^2}{E_p^3 \xi^2} \left(\frac{c_1^2(1 - \xi)}{2E_p^2 \xi} + 4c_1 p_1 \cdot p_3 \right) \int \frac{d^d k}{(2\pi)^d} \frac{1}{|\vec{p} - \vec{k}|^2 |\vec{p}' - \vec{k}|^2} + \cdots \]

From scattering amplitudes to classical gravity
One-loop

\[M^{\text{Iterated}} = \frac{i\pi G_N^2}{E_p^3 \xi} \frac{4c_1^2}{|p|} \left(\log |q|^2 - \frac{2}{3-d} \right) + \frac{2\pi^2 G_N^2}{E_p^2 \xi^2 |q|} \left(\frac{c_1^2 (\xi - 1)}{2E_p^2 \xi} - 4c_1 p_1 \cdot p_3 \right) \]

\[M^{1-\text{loop}} = \frac{\pi^2 G_N^2}{E_p^3 \xi} \left[\frac{1}{2|q|} \left(\frac{c_\triangledown}{m_a} + \frac{c_\triangleleft}{m_b} \right) + \frac{i}{E_p |p|} \frac{c_\Box}{\pi |q|^2} \left(\frac{2}{3-d} - \log |q|^2 \right) \right] \]

\[V_{2PM}(p, q) = M^{1-\text{loop}} + M^{\text{Iterated}} \]

Again same result as from matching, no singular term
Effective potential

In fact we do not have to go through either matching procedure or solving Lippmann-Schwinger to derive observables such as the scattering angle.

Energy relation makes everything simple:

\[
p^2 = p^2_\infty - 2E\xi \left[\tilde{M}^{\text{cl.}}_{\text{tree}}(p^2_\infty, r) + \tilde{M}^{\text{cl.}}_{1-\text{loop}}(p^2_\infty, r) \right]
\]

(Damour; Bern, Cheung, Roiban, She, Solon, Zeng; Kalin, Porto; NEJB, Damgaard, Cristofoli)
Effective potential

Thus given the classical amplitude

\[
\tilde{M}^{\text{cl.}}(p, r) \equiv - \frac{1}{2E\xi} \sum_{n=1}^{\infty} \frac{G_N^m \tilde{c}_{(n-1)-\text{loop}}(p)}{r^n}
\]

\[
f_n(E) = \tilde{c}_{(n-1)-\text{loop}}(p_{\infty}) \quad V_{\text{eff}}(r) \equiv - \sum_{n=1}^{\infty} \frac{G_N^m f_n(E)}{r^n}
\]

Non-relativistic Hamiltonian with effective potential

\[
\hat{H} = \hat{p}^2 + V_{\text{eff}}(r)
\]
Scattering angle all orders

\[\chi = \sum_{k=1}^{\infty} \tilde{\chi}_k(b) , \quad \tilde{\chi}(b) \equiv \frac{2b}{k!} \int_0^{+\infty} du \left(\frac{d}{du^2} \right)^k \frac{V^k_{\text{eff}}(r)}{p_{\infty}^{2k}} \]

(Kalin, Porto; NEJB, Damgaard, Cristofoli)

\[p_r = \sqrt{p_{\infty}^2 - \frac{L^2}{r^2} - V_{\text{eff}}(r)} \]

\[\frac{\chi}{2} = - \int_{r_m}^{+\infty} dr \frac{\partial p_r}{\partial L} - \frac{\pi}{2} \]

Corrects ‘Bohm’s formula’ + no reference minimal distance
post-Minkowskian expansion

Will use similar eikonal setup as for bending of light (extended to massive case):

\[
M(\vec{b}) = \int d^2 \vec{q} e^{-i \vec{q} \cdot \vec{b}} M(\vec{q})
\]

\[
M(\vec{b}) = 4p(E_1 + E_2)(e^{i \chi(\vec{b})} - 1)
\]

Eikonal phase

\[
\vec{p}_1 = -\vec{p}_4
\]

\[
b \equiv |\vec{b}|
\]

b orthogonal and

From scattering amplitudes to classical gravity
post-Minkowskian expansion

Stationary phase condition (leading order in q)

\[
2 \sin(\theta/2) = \frac{-2M}{\sqrt{\hat{M}^4 - 4m_1^2 m_2^2}} \frac{\partial}{\partial b} (\chi_1(b) + \chi_2(b))
\]

\[
\chi_1(b) = 2G \frac{\hat{M}^4 - 2m_1^2 m_2^2}{\sqrt{\hat{M}^4 - 4m_1^2 m_2^2}} \left(\frac{1}{d-2} - \log \left(\frac{b}{2} \right) - \gamma_E \right)
\]

\[
\chi_2(b) = \frac{3\pi G^2}{8\sqrt{\hat{M}^4 - 4m_1^2 m_2^2}} \frac{m_1 + m_2}{b} \left(5\hat{M}^4 - 4m_1^2 m_2^2 \right)
\]
Final result becomes

\[2 \sin \left(\frac{\theta}{2} \right) = \frac{4GM}{b} \left(\frac{\hat{M}^4 - 2m_1^2m_2^2}{\hat{M}^4 - 4m_1^2m_2^2} \right) + \frac{3\pi}{16} \frac{G(m_1 + m_2)}{b} \left(\frac{5\hat{M}^4 - 4m_1^2m_2^2}{\hat{M}^4 - 4m_1^2m_2^2} \right) \]

Agrees with (Westpfahl)

Light-like limit

\[\theta = \frac{4Gm_1}{b} + \frac{15\pi}{4} \frac{G^2m_1^2}{b^2} \]
Any PM order given amplitude...

<table>
<thead>
<tr>
<th>PM</th>
<th>$\chi^{PM}/(\frac{G_{N}}{p_{\infty}}L)^{PM}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>f_1</td>
</tr>
<tr>
<td>2</td>
<td>$\frac{1}{2}\pi p_{\infty}^2 f_2$</td>
</tr>
<tr>
<td>3</td>
<td>$2f_3p_{\infty}^4 + f_1 f_2 p_{\infty}^2 - \frac{f_1^3}{12}$</td>
</tr>
<tr>
<td>4</td>
<td>$\frac{3}{8}\pi p_{\infty}^4 (2f_4 p_{\infty}^2 + f_2^2 + 2f_1 f_3)$</td>
</tr>
<tr>
<td>5</td>
<td>$\frac{8}{3}f_5p_{\infty}^8 + 4(f_2 f_3 + f_1 f_4)p_{\infty}^6 + f_1(f_2^2 + f_1 f_3)p_{\infty}^4 - \frac{1}{6}f_1^3 f_2 p_{\infty}^2 + \frac{f_1^5}{80}$</td>
</tr>
<tr>
<td>6</td>
<td>$\frac{5}{16}\pi p_{\infty}^6 (3f_6 p_{\infty}^4 + 3(f_3^2 + 2f_2 f_4 + 2f_1 f_5)p_{\infty}^2 + f_2^3 + 6f_1 f_2 f_3 + 3f_1^2 f_4)$</td>
</tr>
<tr>
<td>7</td>
<td>$\frac{16}{5}f_7 p_{\infty}^{10} + 8(f_3 f_4 + f_2 f_5 + f_1 f_6)p_{\infty}^8 + 6(f_3 f_2^2 + 2f_1 f_4 f_2 + f_1(f_3^2 + f_1 f_5))p_{\infty}^6 - \frac{1}{8}f_1^3 (2f_2^2 + f_1 f_3)p_{\infty}^4 + \frac{3}{80}f_1^5 f_2 p_{\infty}^2 - \frac{f_1^7}{448}$</td>
</tr>
<tr>
<td>8</td>
<td>$\frac{35}{128}\pi p_{\infty}^8 (4f_8 p_{\infty}^6 + 6(f_4^2 + 2(f_3 f_5 + f_2 f_6 + f_1 f_7))p_{\infty}^4 + 12(f_4 f_2^2 + (f_3^2 + 2f_1 f_5) f_2 + f_1(2f_3 f_4 + f_1 f_6))p_{\infty}^2 + f_2^4 + 6f_1 f_2^2 + 12f_1^2 f_2 f_3 + 12f_1^2 f_2 f_4 + 4f_1^3 f_5$</td>
</tr>
</tbody>
</table>

Confirmation of 3PM & 4PM

Bern, Cheung, Roiban, Shen, Solon, Zeng))

From scattering amplitudes to classical gravity
Outlook

- Amplitude toolbox for computations already provided new efficient methods for computation:
- Double-copy and KLT clearly helps simplify computations
- Amplitude tools can provide compact trees for unitarity computations
- Very impressive computations by (Bern, Cheung, Roiban, Shen, Solon, Zeng, and many others) + much more to come...
- Endless tasks ahead / open questions regarding spin, radiation, quantum terms, high order curvature terms etc
- Clearly much more physics to learn....