Abstract: By gauging a discrete higher-form symmetry on a higher codimensional manifold in spacetime, which we define as higher gauging, we can construct topological defects which are generally non-invertible. A q-form symmetry is called p-gaugeable if it can be gauged on a codimension-p manifold in spacetime. I will focus on 1-gaugeable 1-form symmetries in general 2+1d QFT, and gauge them on a surface in spacetime. In the special case of 2+1d TQFT, every (invertible and non-invertible) 0-form global symmetry, including the Z2 electromagnetic symmetry of the Z2 gauge theory, is realized from higher gauging. I will further discuss the fusion rules between the surfaces, the bulk lines, and lines that only live on the surfaces, determining some of the most basic data for the underlying fusion 2-category.